Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR22-071 | 13th May 2022
Arkadev Chattopadhyay, Utsab Ghosal, Partha Mukhopadhyay

Robustly Separating the Arithmetic Monotone Hierarchy Via Graph Inner-Product

We establish an $\epsilon$-sensitive hierarchy separation for monotone arithmetic computations. The notion of $\epsilon$-sensitive monotone lower bounds was recently introduced by Hrubes [Computational Complexity'20]. We show the following:

(1) There exists a monotone polynomial over $n$ variables in VNP that cannot be computed by $2^{o(n)}$ size monotone ... more >>>


TR22-070 | 8th May 2022
Pranav Bisht, Ilya Volkovich

On Solving Sparse Polynomial Factorization Related Problems

Revisions: 6

In a recent result of Bhargava, Saraf and Volkovich [FOCS’18; JACM’20], the first sparsity bound for constant individual degree polynomials was shown. In particular, it was shown that any factor of a polynomial with at most $s$ terms and individual degree bounded by $d$ can itself have at most $s^{O(d^2\log ... more >>>


TR22-069 | 28th April 2022
Silas Richelson, Sourya Roy

List-Decoding Random Walk XOR Codes Near the Johnson Bound

Revisions: 1

In a breakthrough result, Ta-Shma described an explicit construction of an almost optimal binary code (STOC 2017). Ta-Shma's code has distance $\frac{1-\varepsilon}{2}$ and rate $\Omega\bigl(\varepsilon^{2+o(1)}\bigr)$ and thus it almost achieves the Gilbert-Varshamov bound, except for the $o(1)$ term in the exponent. The prior best list-decoding algorithm for (a variant of) ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint