
PreviousNext
In this paper, we initiate study of the computational power of adaptive and non-adaptive monotone decision trees – decision trees where each query is a monotone function on the input bits. In the most general setting, the monotone decision tree height (or size) can be viewed as a measure of ... more >>>
A classic result of Nisan [SICOMP '91] states that the deterministic decision tree depth complexity of every total Boolean function is at most the cube of its randomized decision tree depth complexity. The question whether randomness helps in significantly reducing the size of decision trees appears not to have been ... more >>>
Considering the bounded-degree graph model, we show that if the degree bound is two,
then every graph property can be tested within query complexity that only depends on the proximity parameter.
Specifically, the query complexity is ${\rm poly}(1/\epsilon)$, where $\epsilon$ denotes the proximity parameter.
The key observation is that a ...
more >>>
PreviousNext