Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR22-124 | 9th September 2022
Oded Goldreich, Guy Rothblum, Tal Skverer

On Interactive Proofs of Proximity with Proof-Oblivious Queries

Revisions: 5

Interactive proofs of proximity (IPPs) offer ultra-fast
approximate verification of assertions regarding their input,
where ultra-fast means that only a small portion of the input is read
and approximate verification is analogous to the notion of
approximate decision that underlies property testing.
Specifically, in an IPP, the prover can make ... more >>>


TR22-123 | 4th September 2022
Alexander A. Sherstov

The Approximate Degree of DNF and CNF Formulas

The approximate degree of a Boolean function $f\colon\{0,1\}^n\to\{0,1\}$ is the minimum degree of a real polynomial $p$ that approximates $f$ pointwise: $|f(x)-p(x)|\leq1/3$ for all $x\in\{0,1\}^n.$ For every $\delta>0,$ we construct CNF and DNF formulas of polynomial size with approximate degree $\Omega(n^{1-\delta}),$ essentially matching the trivial upper bound of $n.$ This ... more >>>


TR22-122 | 29th August 2022
Young Kun Ko

Efficient Linearization Implies the Multiphase Conjecture

The main motivation for studying linear data structures and circuits is the intuition that non-linear advice cannot help in computing a linear operator. Jukna and Schnitger formalized this as a conjecture which states that all circuits computing a linear operator can be ``linearized," with only a constant size blow-up. We ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint