A code $C \colon \{0,1\}^k \to \{0,1\}^n$ is a $q$-locally decodable code ($q$-LDC) if one can recover any chosen bit $b_i$ of the message $b \in \{0,1\}^k$ with good confidence by randomly querying the encoding $x = C(b)$ on at most $q$ coordinates. Existing constructions of $2$-LDCs achieve $n = ... more >>>
We initiate a study of the streaming complexity of constraint satisfaction problems (CSPs) when the constraints arrive in a random order. We show that there exists a CSP, namely Max-DICUT, for which random ordering makes a provable difference. Whereas a $4/9 \approx 0.445$ approximation of DICUT requires $\Omega(\sqrt{n})$ space with ... more >>>
We study the polynomial equivalence problem for orbits of read-once arithmetic formulas (ROFs). Read-once formulas have received considerable attention in both algebraic and Boolean complexity and have served as a testbed for developing effective tools and techniques for analyzing circuits. Two $n$-variate polynomials $f, g \in \mathbb{F}[\mathbf{x}]$ are equivalent, denoted ... more >>>