Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR21-154 | 10th November 2021
Inbar Ben Yaacov, Gil Cohen, Tal Yankovitz

Explicit Binary Tree Codes with Sub-Logarithmic Size Alphabet

Since they were first introduced by Schulman (STOC 1993), the construction of tree codes remained an elusive open problem. The state-of-the-art construction by Cohen, Haeupler and Schulman (STOC 2018) has constant distance and $(\log n)^{e}$ colors for some constant $e > 1$ that depends on the distance, where $n$ is ... more >>>


TR21-153 | 9th November 2021
Ronen Shaltiel, Emanuele Viola

On Hardness Assumptions Needed for "Extreme High-End" PRGs and Fast Derandomization

Revisions: 1

The hardness vs.~randomness paradigm aims to explicitly construct pseudorandom generators $G:\{0,1\}^r \to \{0,1\}^m$ that fool circuits of size $m$, assuming the existence of explicit hard functions. A ``high-end PRG'' with seed length $r=O(\log m)$ (implying BPP=P) was achieved in a seminal work of Impagliazzo and Wigderson (STOC 1997), assuming \textsc{the ... more >>>


TR21-152 | 8th November 2021
Gal Arnon, Tomer Grossman

Min-Entropic Optimality

We introduce the notion of \emph{Min-Entropic Optimality} thereby providing a framework for arguing that a given algorithm computes a function better than any other algorithm. An algorithm is $k(n)$ Min-Entropic Optimal if for every distribution $D$ with min-entropy at least $k(n)$, its expected running time when its input is drawn ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint