In this paper, we prove strengthened lower bounds for constant-depth set-multilinear formulas. More precisely, we show that over any field, there is an explicit polynomial $f$ in VNP defined over $n^2$ variables, and of degree $n$, such that any product-depth $\Delta$ set-multilinear formula computing $f$ has size at least $n^{\Omega ... more >>>
Multivariate multipoint evaluation is the problem of evaluating a multivariate polynomial, given as a coefficient vector, simultaneously at multiple evaluation points. In this work, we show that there exists a deterministic algorithm for multivariate multipoint evaluation over any finite field $\mathbb{F}$ that outputs the evaluations of an $m$-variate polynomial of ... more >>>
A superredundant clause is a clause that is redundant in the resolution closure of a formula. The converse concept of superirredundancy ensures membership of the clause in all minimal CNF formulae that are equivalent to the given one. This allows for building formulae where some clauses are fixed when minimizing ... more >>>