A map $g:\{0,1\}^n\to\{0,1\}^m$ ($m>n$) is a hard proof complexity generator for a proof system $P$ iff for every string $b\in\{0,1\}^m\setminus Rng(g)$, formula $\tau_b(g)$ naturally expressing $b\not\in Rng(g)$ requires superpolynomial size $P$-proofs. One of the well-studied maps in the theory of proof complexity generators is Nisan--Wigderson generator. Razborov (Annals of Mathematics ... more >>>
In this paper we study the problem of efficiently factorizing polynomials in the free noncommutative ring F of polynomials in noncommuting variables x_1,x_2,…,x_n over the field F. We obtain the following result:
Given a noncommutative arithmetic formula of size s computing a noncommutative polynomial f in F as input, where ... more >>>
We give PRG for depth-$d$, size-$m$ $\mathrm{AC}^0$ circuits with seed length $O(\log^{d-1}(m)\log(m/\varepsilon)\log\log(m))$. Our PRG improves on previous work [TX13, ST19, Kel21] from various aspects. It has optimal dependence on $\frac{1}{\varepsilon}$ and is only one “$\log\log(m)$” away from the lower bound barrier. For the case of $d=2$, the seed length tightly ... more >>>