We propose a new approach to the hardness-to-randomness framework and to the promise-BPP=promise-P conjecture. Classical results rely on non-uniform hardness assumptions to construct derandomization algorithms that work in the worst-case, or rely on uniform hardness assumptions to construct derandomization algorithms that work only in the average-case. In both types of ... more >>>
We prove that there exists an absolute constant $\delta>0$ such any binary code $C\subset\{0,1\}^N$ tolerating $(1/2-\delta)N$ adversarial deletions must satisfy $|C|\le 2^{\poly\log N}$ and thus have rate asymptotically approaching $0$. This is the first constant fraction improvement over the trivial bound that codes tolerating $N/2$ adversarial deletions must have rate ... more >>>
We give a direct product theorem for the entanglement-assisted interactive quantum communication complexity of an $l$-player predicate $V$. In particular we show that for a distribution $p$ that is product across the input sets of the $l$ players, the success probability of any entanglement-assisted quantum communication protocol for computing $n$ ... more >>>