Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR21-083 | 21st June 2021
Mark Braverman, Sumegha Garg, Or Zamir

Tight Space Complexity of the Coin Problem

In the coin problem we are asked to distinguish, with probability at least $2/3$, between $n$ $i.i.d.$ coins which are heads with probability $\frac{1}{2}+\beta$ from ones which are heads with probability $\frac{1}{2}-\beta$. We are interested in the space complexity of the coin problem, corresponding to the width of a read-once ... more >>>


TR21-082 | 16th June 2021
Rahul Ilango, Hanlin Ren, Rahul Santhanam

Hardness on any Samplable Distribution Suffices: New Characterizations of One-Way Functions by Meta-Complexity

We show that one-way functions exist if and only if there is some samplable distribution D such that it is hard to approximate the Kolmogorov complexity of a string sampled from D. Thus we characterize the existence of one-way functions by the average-case hardness of a natural \emph{uncomputable} problem on ... more >>>


TR21-081 | 14th June 2021
Nutan Limaye, Srikanth Srinivasan, Sébastien Tavenas

Superpolynomial Lower Bounds Against Low-Depth Algebraic Circuits

Revisions: 1

An Algebraic Circuit for a polynomial $P\in F[x_1,\ldots,x_N]$ is a computational model for constructing the polynomial $P$ using only additions and multiplications. It is a \emph{syntactic} model of computation, as opposed to the Boolean Circuit model, and hence lower bounds for this model are widely expected to be easier to ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint