Following the paper of Alekhnovich, Ben-Sasson, Razborov, Wigderson \cite{ABRW04} we call a pseudorandom generator $\mathrm{PRG}\colon \{0, 1\}^n \to \{0, 1\}^m$ hard for for a propositional proof system $\mathrm{P}$ if $\mathrm{P}$ cannot efficiently prove the (properly encoded) statement $b \notin \mathrm{Im}(\mathrm{PRG})$ for any string $b \in \{0, 1\}^m$.
In \cite{ABRW04} authors ... more >>>
We give an explicit construction of an affine extractor (over $\mathbb{F}_2$) that works for affine sources on $n$ bits with min-entropy $k \ge~ \log n \cdot (\log \log n)^{1 + o(1)}$. This improves prior work of Li (FOCS'16) that requires min-entropy at least $\mathrm{poly}(\log n)$.
Our construction is ...
more >>>
We identify two new big clusters of proof complexity measures equivalent up to
polynomial and $\log n$ factors. The first cluster contains, among others,
the logarithm of tree-like resolution size, regularized (that is, multiplied
by the logarithm of proof length) clause and monomial space, and clause
space, both ordinary and ...
more >>>