Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR21-057 | 23rd April 2021
Hanlin Ren, Rahul Santhanam

Hardness of KT Characterizes Parallel Cryptography

Revisions: 1

A recent breakthrough of Liu and Pass (FOCS'20) shows that one-way functions exist if and only if the (polynomial-)time-bounded Kolmogorov complexity K^t is bounded-error hard on average to compute. In this paper, we strengthen this result and extend it to other complexity measures:

1. We show, perhaps surprisingly, that the ... more >>>


TR21-056 | 22nd April 2021
Yanyi Liu, Rafael Pass

On the Possibility of Basing Cryptography on $\EXP \neq \BPP$

Liu and Pass (FOCS'20) recently demonstrated an equivalence between the existence of one-way functions (OWFs) and mild average-case hardness of the time-bounded Kolmogorov complexity problem. In this work, we establish a similar equivalence but to a different form of time-bounded Kolmogorov Complexity---namely, Levin's notion of Kolmogorov Complexity---whose hardness is closely ... more >>>


TR21-055 | 20th April 2021
Yanyi Liu, Rafael Pass

Cryptography from Sublinear-Time Average-Case Hardness of Time-Bounded Kolmogorov Complexity

Let $\mktp[s]$ be the set of strings $x$ such that $K^t(x) \leq s(|x|)$, where $K^t(x)$ denotes the $t$-bounded Kolmogorov complexity of the truthtable described by $x$. Our main theorem shows that for an appropriate notion of mild average-case hardness, for every $\varepsilon>0$, polynomial $t(n) \geq (1+\varepsilon)n$, and every ``nice'' class ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint