We prove a SOS degree lower bound for the planted clique problem on Erd{\"o}s-R\'enyi random graphs $G(n,1/2)$. The bound we get is degree $d=\Omega(\epsilon^2\log n/\log\log n)$ for clique size $\omega=n^{1/2-\epsilon}$, which is almost tight. This improves the result of \cite{barak2019nearly} on the ``soft'' version of the problem, where the family ... more >>>
PPSZ, for long time the fastest known algorithm for k-SAT, works by going through the variables of the input formula in random order; each variable is then set randomly to 0 or 1, unless the correct value can be inferred by an efficiently implementable rule (like small-width resolution; or being ... more >>>
We initiate the systematic study of QMA algorithms in the setting of property testing, to which we refer as QMA proofs of proximity (QMAPs). These are quantum query algorithms that receive explicit access to a sublinear-size untrusted proof and are required to accept inputs having a property $\Pi$ and reject ... more >>>