Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR20-095 | 24th June 2020
Mikito Nanashima

On Basing Auxiliary-Input Cryptography on NP-hardness via Nonadaptive Black-Box Reductions

Revisions: 1

A black-box (BB) reduction is a central proof technique in theoretical computer science. However, the limitations on BB reductions have been revealed for several decades, and the series of previous work gives strong evidence that we should avoid a nonadaptive BB reduction to base cryptography on NP-hardness (e.g., Akavia et ... more >>>


TR20-094 | 24th June 2020
Ronen Shaltiel

Is it possible to improve Yao’s XOR lemma using reductions that exploit the efficiency of their oracle?

Revisions: 1

Yao's XOR lemma states that for every function $f:\set{0,1}^k \ar \set{0,1}$, if $f$ has hardness $2/3$ for $P/poly$ (meaning that for every circuit $C$ in $P/poly$, $\Pr[C(X)=f(X)] \le 2/3$ on a uniform input $X$), then the task of computing $f(X_1) \oplus \ldots \oplus f(X_t)$ for sufficiently large $t$ has hardness ... more >>>


TR20-093 | 23rd June 2020
Ronen Eldan, Dana Moshkovitz

Reduction From Non-Unique Games To Boolean Unique Games

Revisions: 1

We reduce the problem of proving a "Boolean Unique Games Conjecture" (with gap $1-\delta$ vs. $1-C\delta$, for any $C> 1$, and sufficiently small $\delta>0$) to the problem of proving a PCP Theorem for a certain non-unique game.
In a previous work, Khot and Moshkovitz suggested an inefficient candidate reduction (i.e., ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint