Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR20-092 | 16th June 2020
Ashish Dwivedi, Nitin Saxena

Computing Igusa's local zeta function of univariates in deterministic polynomial-time

Igusa's local zeta function $Z_{f,p}(s)$ is the generating function that counts the number of integral roots, $N_{k}(f)$, of $f(\mathbf x) \bmod p^k$, for all $k$. It is a famous result, in analytic number theory, that $Z_{f,p}$ is a rational function in $\mathbb{Q}(p^s)$. We give an elementary proof of this fact ... more >>>


TR20-091 | 14th June 2020
Janaky Murthy, vineet nair, Chandan Saha

Randomized polynomial-time equivalence between determinant and trace-IMM equivalence tests

Equivalence testing for a polynomial family $\{g_m\}_{m \in \mathbb{N}}$ over a field F is the following problem: Given black-box access to an $n$-variate polynomial $f(\mathbb{x})$, where $n$ is the number of variables in $g_m$ for some $m \in \mathbb{N}$, check if there exists an $A \in \text{GL}(n,\text{F})$ such that $f(\mathbb{x}) ... more >>>


TR20-090 | 10th June 2020
Kai-Min Chung, Siyao Guo, Qipeng Liu, Luowen Qian

Tight Quantum Time-Space Tradeoffs for Function Inversion

Revisions: 1

In function inversion, we are given a function $f: [N] \mapsto [N]$, and want to prepare some advice of size $S$, such that we can efficiently invert any image in time $T$. This is a well studied problem with profound connections to cryptography, data structures, communication complexity, and circuit lower ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint