Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Paper:

TR96-021 | 13th February 1996 00:00

NP-hard Sets Are Superterse unless NP Is Small

RSS-Feed




TR96-021
Authors: Yongge Wang
Publication: 7th March 1996 19:00
Downloads: 3362
Keywords: 


Abstract:

We show that the class of sets which can be polynomial
time truth table reduced to some $p$-superterse sets has
$p$-measure 0. Hence, no $P$-selective set is $\le_{tt}^p$-hard
for $E$. Also we give a partial affirmative answer to
the conjecture by Beigel, Kummer and Stephan. They conjectured
that every $\le_{tt}^p$-hard set for $NP$ is $P$-superterse
unless $P=NP$. We will prove that every $\le_{tt}^p$-hard set
for $NP$ is $P$-superterse unless $NP$ has $p$-measure $0$.



ISSN 1433-8092 | Imprint