__
TR02-002 | 3rd January 2002 00:00
__

#### A lower bound on the quantum query complexity of read-once functions

**Abstract:**
We establish a lower bound of $\Omega{(\sqrt{n})}$ on the bounded-error quantum query complexity of read-once Boolean functions, providing evidence for the conjecture that $\Omega(\sqrt{D(f)})$ is a lower bound for all Boolean functions.Our technique extends a result of Ambainis, based on the idea that successful computation of a function requires ``decoherence'' of initially coherently superposed inputs in the query register, having different values of the function. The number of queries is bounded by comparing the required total amount of decoherence of a judiciously selected set of input-output pairs to an upper bound on the amount achievable in a single query step. We use an extension of this result to general weights on input pairs, and general superpositions of inputs.