TR06-010 Authors: Reka Albert, Bhaskar DasGupta, Riccardo Dondi, Eduardo D. Sontag

Publication: 19th January 2006 22:27

Downloads: 2922

Keywords:

In this paper we consider the p-ary transitive reduction (TR<sub>p</sub>) problem where p>0 is an integer; for p=2 this problem arises in inferring a sparsest possible (biological) signal transduction network consistent with a set of experimental observations with a goal to minimize false positive inferences even if risking false negatives. Special cases of TR<sub>p</sub> has been investigated before in different contexts; the best previous results are as follows:

<P>

(1) The minimum equivalent digraph problem, that correspond to a special case of TR<SUB>1</SUB> with no critical edges, is known to be MAX-SNP-hard, admits a polynomial time algorithm with an approximation ratio of 1.617+\eps for any constant \eps>0 and can be solved in linear time for directed acyclic graphs.

<P>

(2) A 2-approximation algorithm exists for TR<SUB>1</SUB>.

<P>

In this paper, our contributions are as follows:

<P>

(a) We observe that TR<SUB>p</SUB>, for any integer p>0, can be solved in linear time for directed acyclic graphs.

<P>

(b) We provide a 1.78-approximation for TR<SUB>1</SUB> that improves the 2-approximation mentioned in (2) above.

<P>

(c) We provide a 2+o(1)-approximation for TR<SUB>p</SUB> on general graphs for any prime p>0.