Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



TR07-040 | 12th April 2007 00:00

Locally Decodable Codes From Nice Subsets of Finite Fields and Prime Factors of Mersenne Numbers


Authors: Kiran Kedlaya, Sergey Yekhanin
Publication: 28th April 2007 00:31
Downloads: 1584


A k-query Locally Decodable Code (LDC) encodes an n-bit message x as an N-bit codeword C(x), such that one can probabilistically recover any bit x_i of the message by querying only k bits of the codeword C(x), even after some constant fraction of codeword bits has been corrupted. The major goal of LDC related research is to establish the optimal trade-off between length and query complexity of such codes.

Recently [Y] introduced a novel technique for constructing locally decodable codes and vastly improved the upper bounds for code length. The technique is based on Mersenne primes. In this paper we extend the work of [Y] and argue that further progress via these methods is tied to progress on an old number theory question regarding the size of the largest prime factors of Mersenne numbers.

Specifically, we show that every Mersenne number m = 2^t - 1 that has a prime factor p > m^\gamma yields a family of k(\gamma)-query locally decodable codes of length Exp(n^{1/t}). Conversely, if for some fixed k and all \epsilon>0 one can use the technique of [Y] to obtain a family of k-query LDCs of length Exp(n^\epsilon); then infinitely many Mersenne numbers have prime factors larger than known currently.

ISSN 1433-8092 | Imprint