Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR08-034 | 6th May 2008 00:00

The Complexity of Local List Decoding

RSS-Feed




Revision #1
Authors: Dan Gutfreund, Guy Rothblum
Accepted on: 6th May 2008 00:00
Downloads: 1247
Keywords: 


Abstract:

We study the complexity of locally list-decoding binary error correcting codes with good parameters (that are polynomially related to information theoretic bounds). We show that computing majority over $\Theta(1/\eps)$ bits is essentially equivalent to locally list-decoding binary codes from relative distance $1/2-\eps$ with list size at most $\poly(1/\eps)$. That is, a local-decoder for such a code can be used to construct a circuit of roughly the same size and depth that computes majority on $\Theta(1/\eps)$ bits. On the other hand, there is an explicit locally list-decodable code with these parameters that has a very efficient (in terms of circuit size and depth) local-decoder that uses majority gates of fan-in $\Theta(1/\eps)$.

Using known lower bounds for computing majority by constant depth circuits, our results imply that every constant-depth decoder for such a code must have size almost exponential in $1/\eps$ (this extends even to sub-exponential list sizes). This shows that the list-decoding radius of the constant-depth local-list-decoders of Goldwasser {\em et al.} [STOC07] is essentially optimal.


Paper:

TR08-034 | 19th January 2008 00:00

The Complexity of Local List Decoding





TR08-034
Authors: Dan Gutfreund, Guy Rothblum
Publication: 22nd March 2008 01:38
Downloads: 1189
Keywords: 


Abstract:

We study the complexity of locally list-decoding binary error correcting codes with good parameters (that are polynomially related to information theoretic bounds). We show that computing majority over $\Theta(1/\eps)$ bits is essentially equivalent to locally list-decoding binary codes from relative distance $1/2-\eps$ with list size $\poly(1/\eps)$. That is, a local-decoder for such a code can be used to construct a circuit of roughly the same size and depth that computes majority on $\Theta(1/\eps)$ bits. On the other hand, there is an explicit locally list-decodable code with these parameters that has a very efficient (in terms of circuit size and depth) local-decoder that uses majority gates of fan-in $\Theta(1/\eps)$.

Using known lower bounds for computing majority by constant depth circuits, our results imply that every constant-depth decoder for such a code must have size almost exponential in $1/\eps$. This shows that the list-decoding radius of the constant-depth local-list-decoders of Goldwasser {\em et al.} [STOC07] is essentially optimal.

Using the tight connection between locally-list-decodable codes and hardness amplification, we obtain similar limitations on the complexity of uniform (and even somewhat non-uniform) fully-black-box worst-case to average-case reductions. Very recently, Shaltiel and Viola [ECCC07] obtained similar limitations for completely non-uniform fully-black-box worst-case to average-case reductions, but only for the special case that the reduction is {\em non-adaptive}.



ISSN 1433-8092 | Imprint