Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR18-039 | 18th June 2020 05:22

Complexity of Unordered CNF Games

RSS-Feed




Revision #1
Authors: Md Lutfar Rahman, Thomas Watson
Accepted on: 18th June 2020 05:22
Downloads: 359
Keywords: 


Abstract:

The classic TQBF problem is to determine who has a winning strategy in a game played on a given CNF formula, where the two players alternate turns picking truth values for the variables in a given order, and the winner is determined by whether the CNF gets satisfied. We study variants of this game in which the variables may be played in any order, and each turn consists of picking a remaining variable and a truth value for it.

For the version where the set of variables is partitioned into two halves and each player may only pick variables from his/her half, we prove that the problem is PSPACE-complete for 5-CNFs and in P for 2-CNFs. Previously, it was known to be PSPACE-complete for unbounded-width CNFs (Schaefer, STOC 1976).

For the general unordered version (where each variable can be picked by either player), we also prove that the problem is PSPACE-complete for 5-CNFs and in P for 2-CNFs. Previously, it was known to be PSPACE-complete for 6-CNFs (Ahlroth and Orponen, MFCS 2012) and PSPACE-complete for positive 11-CNFs (Schaefer, STOC 1976).


Paper:

TR18-039 | 23rd February 2018 21:35

Complexity of Unordered CNF Games





TR18-039
Authors: Md Lutfar Rahman, Thomas Watson
Publication: 23rd February 2018 21:53
Downloads: 1084
Keywords: 


Abstract:

The classic TQBF problem is to determine who has a winning strategy in a game played on a given CNF formula, where the two players alternate turns picking truth values for the variables in a given order, and the winner is determined by whether the CNF gets satisfied. We study variants of this game in which the variables may be played in any order, and each turn consists of picking a remaining variable and a truth value for it.

For the version where the set of variables is partitioned into two halves and each player may only pick variables from his/her half, we prove that the problem is PSPACE-complete for 5-CNFs and in P for 2-CNFs. Previously, it was known to be PSPACE-complete for unbounded-width CNFs (Schaefer, STOC 1976).

For the general unordered version (where each variable can be picked by either player), we also prove that the problem is PSPACE-complete for 5-CNFs and in P for 2-CNFs. Previously, it was known to be PSPACE-complete for 6-CNFs (Ahlroth and Orponen, MFCS 2012) and PSPACE-complete for positive 11-CNFs (Schaefer, STOC 1976).



ISSN 1433-8092 | Imprint