Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR19-059 | 18th September 2019 00:19

Samplers and Extractors for Unbounded Functions

RSS-Feed




Revision #1
Authors: Rohit Agrawal
Accepted on: 18th September 2019 00:19
Downloads: 781
Keywords: 


Abstract:

Blasiok (SODA'18) recently introduced the notion of a subgaussian sampler, defined as an averaging sampler for approximating the mean of functions $f:\{0,1\}^m \to \mathbb{R}$ such that $f(U_m)$ has subgaussian tails, and asked for explicit constructions. In this work, we give the first explicit constructions of subgaussian samplers (and in fact averaging samplers for the broader class of subexponential functions) that match the best-known constructions of averaging samplers for $[0,1]$-bounded functions in the regime of parameters where the approximation error $\varepsilon$ and failure probability $\delta$ are subconstant. Our constructions are established via an extension of the standard notion of randomness extractor (Nisan and Zuckerman, JCSS'96) where the error is measured by an arbitrary divergence rather than total variation distance, and a generalization of Zuckerman's equivalence (Random Struct. Alg.'97) between extractors and samplers. We believe that the framework we develop, and specifically the notion of an extractor for the Kullback-Leibler (KL) divergence, are of independent interest. In particular, KL-extractors are stronger than both standard extractors and subgaussian samplers, but we show that they exist with essentially the same parameters (constructively and non-constructively) as standard extractors.


Paper:

TR19-059 | 18th April 2019 03:26

Samplers and extractors for unbounded functions





TR19-059
Authors: Rohit Agrawal
Publication: 18th April 2019 03:27
Downloads: 980
Keywords: 


Abstract:

Blasiok (SODA'18) recently introduced the notion of a subgaussian sampler, defined as an averaging sampler for approximating the mean of functions $f:\{0,1\}^m \to \mathbb{R}$ such that $f(U_m)$ has subgaussian tails, and asked for explicit constructions. In this work, we give the first explicit constructions of subgaussian samplers (and in fact averaging samplers for the broader class of subexponential functions) that match the best-known constructions of averaging samplers for $[0,1]$-bounded functions in the regime of parameters where the approximation error $\varepsilon$ and failure probability $\delta$ are subconstant. Our constructions are established via an extension of the standard notion of randomness extractor (Nisan and Zuckerman, JCSS'96) where the error is measured by an arbitrary divergence rather than total variation distance, and a generalization of Zuckerman's equivalence (Random Struct. Alg.'97) between extractors and samplers. We believe that the framework we develop, and specifically the notion of an extractor for the Kullback-Leibler (KL) divergence, are of independent interest. In particular, KL-extractors are stronger than both standard extractors and subgaussian samplers, but we show that they exist with essentially the same parameters (constructively and non-constructively) as standard extractors.



ISSN 1433-8092 | Imprint