Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR20-003 | 13th April 2020 23:49

Tight Static Lower Bounds for Non-Adaptive Data Structures

RSS-Feed




Revision #1
Authors: Giuseppe Persiano, Kevin Yeo
Accepted on: 13th April 2020 23:49
Downloads: 388
Keywords: 


Abstract:

In this paper, we study the static cell probe complexity of non-adaptive data structures that maintain a subset of $n$ points from a universe consisting of $m=n^{1+\Omega(1)}$ points. A data structure is defined to be non-adaptive when the memory locations that are chosen to be accessed during a query depend only on the query inputs and not on the contents of memory. We prove an $\Omega(\log m / \log (sw/n\log m))$ static cell probe complexity lower bound for non-adaptive data structures that solve the fundamental dictionary problem where $s$ denotes the space of the data structure in the number of cells and $w$ is the cell size in bits. Our lower bounds hold for all word sizes including the bit probe model ($w = 1$) and are matched by the upper bounds of Boninger et al. [FSTTCS'17].

Our results imply a sharp dichotomy between dictionary data structures with one round of adaptive and at least two rounds of adaptivity. We show that $O(1)$, or $O(\log^{1-\epsilon}(m))$, overhead dictionary constructions are only achievable with at least two rounds of adaptivity. In particular, we show that many $O(1)$ dictionary constructions with two rounds of adaptivity such as cuckoo hashing are optimal in terms of adaptivity. On the other hand, non-adaptive dictionaries must use significantly more overhead.

Finally, our results also imply static lower bounds for the non-adaptive predecessor problem. Our static lower bounds peak higher than the previous, best known lower bounds of $\Omega(\log m / \log w)$ for the dynamic predecessor problem by Boninger et al. [FSTTCS'17] and Ramamoorthy and Rao [CCC'18] in the natural setting of linear space $s = \Theta(n)$ where each point can fit in a single cell $w = \Theta(\log m)$. Furthermore, our results are stronger as they apply to the static setting unlike the previous lower bounds that only applied in the dynamic setting.


Paper:

TR20-003 | 15th January 2020 01:17

Tight Static Lower Bounds for Non-Adaptive Data Structures





TR20-003
Authors: Giuseppe Persiano, Kevin Yeo
Publication: 15th January 2020 16:42
Downloads: 524
Keywords: 


Abstract:

In this paper, we study the static cell probe complexity of non-adaptive data structures that maintain a subset of $n$ points from a universe consisting of $m=n^{1+\Omega(1)}$ points. A data structure is defined to be non-adaptive when the memory locations that are chosen to be accessed during a query depend only on the query inputs and not on the contents of memory. We prove an $\Omega(\log m / \log (sw/n\log m))$ static cell probe complexity lower bound for non-adaptive data structures that solve the fundamental dictionary problem where $s$ denotes the space of the data structure in the number of cells and $w$ is the cell size in bits. Our lower bounds hold for all word sizes including the bit probe model ($w = 1$) and are matched by the upper bounds of Boninger et al. [FSTTCS'17].

Our results imply a sharp dichotomy between dictionary data structures with one round of adaptive and at least two rounds of adaptivity. We show that $O(1)$, or $O(\log^{1-\epsilon}(m))$, overhead dictionary constructions are only achievable with at least two rounds of adaptivity. In particular, we show that many $O(1)$ dictionary constructions with two rounds of adaptivity such as cuckoo hashing are optimal in terms of adaptivity. On the other hand, non-adaptive dictionaries must use significantly more overhead.

Finally, our results also imply static lower bounds for the non-adaptive predecessor problem. Our static lower bounds peak higher than the previous, best known lower bounds of $\Omega(\log m / \log w)$ for the dynamic predecessor problem by Boninger et al. [FSTTCS'17] and Ramamoorthy and Rao [CCC'18] in the natural setting of linear space $s = \Theta(n)$ where each point can fit in a single cell $w = \Theta(\log m)$. Furthermore, our results are stronger as they apply to the static setting unlike the previous lower bounds that only applied in the dynamic setting.



ISSN 1433-8092 | Imprint