Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR23-024 | 30th May 2023 16:58

Approximate degree lower bounds for oracle identification problems

RSS-Feed




Revision #1
Authors: Mark Bun, Nadezhda Voronova
Accepted on: 30th May 2023 16:58
Downloads: 110
Keywords: 


Abstract:

The approximate degree of a Boolean function is the minimum degree of real polynomial that approximates it pointwise. For any Boolean function, its approximate degree serves as a lower bound on its quantum query complexity, and generically lifts to a quantum communication lower bound for a related function.
We introduce a framework for proving approximate degree lower bounds for certain oracle identification problems, where the goal is to recover a hidden binary string $x \in \{0, 1\}^n$ given possibly non-standard oracle access to it. Our lower bounds apply to decision versions of these problems, where the goal is to compute the parity of $x$. We apply our framework to the ordered search and hidden string problems, proving nearly tight approximate degree lower bounds of $\Omega(n/\log^2 n)$ for each. These lower bounds generalize to the weakly unbounded error setting, giving a new quantum query lower bound for the hidden string problem in this regime. Our lower bounds are driven by randomized communication upper bounds for the greater-than and equality functions.



Changes to previous version:

This update adds the generalization of our results to the weakly unbounded error setting.
To appear at TQC 2023.


Paper:

TR23-024 | 9th March 2023 19:23

Approximate degree lower bounds for oracle identification problems


Abstract:

The approximate degree of a Boolean function is the minimum degree of real polynomial that approximates it pointwise. For any Boolean function, its approximate degree serves as a lower bound on its quantum query complexity, and generically lifts to a quantum communication lower bound for a related function.

We introduce a framework for proving approximate degree lower bounds for certain oracle identification problems, where the goal is to recover a hidden binary string $x \in \{0, 1\}^n$ given possibly non-standard oracle access to it. We apply this framework to the ordered search and hidden string problems, proving nearly tight approximate degree lower bounds of $\Omega(n/\log^2 n)$ for each. These new lower bounds are driven by randomized communication upper bounds for the greater-than and equality functions.



ISSN 1433-8092 | Imprint