We present a top-down lower-bound method for depth-$4$ boolean circuits. In particular, we give a new proof of the well-known result that the parity function requires depth-$4$ circuits of size exponential in $n^{1/3}$. Our proof is an application of robust sunflowers and block unpredictability.
Conference version
We present a top-down lower-bound method for depth-$4$ boolean circuits. In particular, we give a new proof of the well-known result that the parity function requires depth-$4$ circuits of size exponential in $n^{1/3}$. Our proof is an application of robust sunflowers and block unpredictability.