Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



TR23-123 | 21st August 2023 21:56

Key-Agreement with Perfect Completeness from Random Oracles


Authors: Noam Mazor
Publication: 22nd August 2023 09:27
Downloads: 128


In the Random Oracle Model (ROM) all parties have oracle access to a common random function, and the parties are limited in the number of queries they can make to the oracle. The Merkle’s Puzzles protocol, introduced by Merkle [CACM ’78], is a key-agreement protocol in the ROM with a quadratic gap between the query complexity of the honest parties and the eavesdropper. This quadratic gap is known to be optimal, by the works of Impagliazzo and Rudich [STOC ’89] and Barak and Mahmoody [Crypto ’09].

When the oracle function is injective or a permutation, Merkle’s Puzzles has perfect completeness. That is, it is certain that the protocol results in agreement between the parties. However, without such an assumption on the random function, there is a small error probability, and the parties may end up holding different keys. This fact raises the question: Is there a key-agreement protocol with perfect completeness and super-linear security in the ROM?

In this paper we give a positive answer to the above question, showing that changes to the query distribution of the parties in Merkle’s Puzzles, yield a protocol with perfect completeness and roughly the same security.

ISSN 1433-8092 | Imprint