__
Revision #1 to TR23-124 | 3rd January 2024 10:16
__
#### Explicit separations between randomized and deterministic Number-on-Forehead communication

**Abstract:**
We study the power of randomness in the Number-on-Forehead (NOF) model in communication complexity. We construct an explicit 3-player function $f:[N]^3 \to \{0,1\}$, such that: (i) there exist a randomized NOF protocol computing it that sends a constant number of bits; but (ii) any deterministic or nondeterministic NOF protocol computing it requires sending about $(\log N)^{1/3}$ many bits. This exponentially improves upon the previously best-known such separation. At the core of our proof is an extension of a recent result of the first and third authors on sets of integers without 3-term arithmetic progressions into a non-arithmetic setting.

**Changes to previous version:**
Small fixes

__
TR23-124 | 24th August 2023 01:12
__

#### Explicit separations between randomized and deterministic Number-on-Forehead communication

**Abstract:**
We study the power of randomness in the Number-on-Forehead (NOF) model in communication complexity. We construct an explicit 3-player function $f:[N]^3 \to \{0,1\}$, such that: (i) there exist a randomized NOF protocol computing it that sends a constant number of bits; but (ii) any deterministic or nondeterministic NOF protocol computing it requires sending about $(\log N)^{1/3}$ many bits. This exponentially improves upon the previously best-known such separation. At the core of our proof is an extension of a recent result of the first and third authors on sets of integers without 3-term arithmetic progressions into a non-arithmetic setting.