We improve the best known upper bounds on the density of corner-free sets over quasirandom groups from inverse poly-logarithmic to quasi-polynomial. We make similarly substantial improvements to the best known lower bounds on the communication complexity of a large class of permutation functions in the 3-player Number-on-Forehead model. Underpinning both results is a general combinatorial theorem that extends the recent work of Kelley, Lovett, and Meka (STOC’24), itself a development of ideas from the breakthrough result of Kelley and Meka on three-term arithmetic progressions (FOCS’23).
We unfortunately must retract the paper. The proof of Lemma 6.6 is incorrect. (Namely, the argument does not suffice to show W is a convex combination of soft rectangles.) We are working on a fix. Thanks to Mehtaab Sawhney and Yang P. Liu for discovering and alerting us to the issue.
We improve the best known upper bounds on the density of corner-free sets over quasirandom groups from inverse poly-logarithmic to quasi-polynomial. We make similarly substantial improvements to the best known lower bounds on the communication complexity of a large class of permutation functions in the 3-player Number-on-Forehead model. Underpinning both results is a general combinatorial theorem that extends the recent work of Kelley, Lovett, and Meka (STOC’24), itself a development of ideas from the breakthrough result of Kelley and Meka on three-term arithmetic progressions (FOCS’23).