Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR25-102 | 6th November 2025 18:59

Monotone Circuit Complexity of Matching

RSS-Feed




Revision #1
Authors: Bruno Pasqualotto Cavalar, Mika Göös, Artur Riazanov, Anastasia Sofronova, Dmitry Sokolov
Accepted on: 6th November 2025 18:59
Downloads: 7
Keywords: 


Abstract:

We show that the perfect matching function on $n$-vertex graphs requires monotone circuits of size $\smash{2^{n^{\Omega(1)}}}$. This improves on the $n^{\Omega(\log n)}$ lower bound of Razborov (1985). Our proof uses the standard approximation method together with a new sunflower lemma for matchings.



Changes to previous version:

Improvements to the presentation.


Paper:

TR25-102 | 22nd July 2025 01:26

Monotone Circuit Complexity of Matching


Abstract:

We show that the perfect matching function on $n$-vertex graphs requires monotone circuits of size $\smash{2^{n^{\Omega(1)}}}$. This improves on the $n^{\Omega(\log n)}$ lower bound of Razborov (1985). Our proof uses the standard approximation method together with a new sunflower lemma for matchings.



ISSN 1433-8092 | Imprint