Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Paper:

TR26-016 | 10th February 2026 12:36

Optimal PRGs for Low-Degree Polynomials over Polynomial-Size Fields

RSS-Feed




TR26-016
Authors: Gil Cohen, Dean Doron, Noam Goldgraber
Publication: 10th February 2026 12:59
Downloads: 62
Keywords: 


Abstract:

Pseudorandom generators (PRGs) for low-degree polynomials are a central object in pseudorandomness, with applications to circuit lower bounds and derandomization. Viola’s celebrated construction (CC 2009) gives a PRG over the binary field, but with seed length exponential in the degree $d$. This exponential dependence can be avoided over sufficiently large fields. In particular, Dwivedi, Guo, and Volk (RANDOM 2024) constructed PRGs with optimal seed length over fields of size exponential in $d$. The latter builds on the framework of Derksen and Viola (FOCS 2022), who obtained optimal-seed constructions over fields of size polynomial in $d$, although growing with the number of variables $n$.

In this work, we construct the first PRG with optimal seed length for degree-$d$ polynomials over fields of polynomial size, specifically $q \approx d^4$, assuming, as in [DGV], sufficiently large characteristic. Our construction follows the framework of [DV, DGV] and reduces the required field size by replacing the hitting-set generator used in prior work with a new pseudorandom object.

We also observe a threshold phenomenon in the field-size dependence. Specifically, we prove that constructing PRGs over fields of sublinear size, for example $q = d^{0.99}$ where $q$ is a power of two, would already yield PRGs for the binary field with comparable seed length via our reduction, provided that the construction imposes no restriction on the characteristic. While a breakdown of existing techniques has been noted before, we prove that this phenomenon is inherent to the problem itself, irrespective of the technique used.



ISSN 1433-8092 | Imprint