A zap is a two-round, witness-indistinguishable protocol in which
the first round, consisting of a message from the verifier to the
prover, can be fixed ``once-and-for-all" and applied to any instance,
and where the verifier does not use any private coins.
We present a zap for every language in NP, ...
more >>>
We establish a lower bound of $\Omega{(\sqrt{n})}$ on the bounded-error quantum query complexity of read-once Boolean functions, providing evidence for the conjecture that $\Omega(\sqrt{D(f)})$ is a lower bound for all Boolean functions.Our technique extends a result of Ambainis, based on the idea that successful computation of a function requires ``decoherence'' ... more >>>
We present the first example of a natural distribution on instances
of an NP-complete problem, with the following properties.
With high probability a random formula from this
distribution (a) is unsatisfiable,
(b) has a short proof that can be found easily, and (c) does not have a short
(general) resolution ...
more >>>
A language is called k-membership comparable if there exists a
polynomial-time algorithm that excludes for any k words one of
the 2^k possibilities for their characteristic string.
It is known that all membership comparable languages can be
reduced to some P-selective language with polynomially many
adaptive queries. We show however ...
more >>>
We prove that if for some epsilon > 0 NP contains a set that is
DTIME(2^{n^{epsilon}})-bi-immune, then NP contains a set that 2-Turing
complete for NP but not 1-truth-table complete for NP. Lutz and Mayordomo
(LM96) and Ambos-Spies and Bentzien (AB00) previously obtained the
same consequence using strong ...
more >>>
We construct a nondeterministic analogue to \textbf{APP}, denoted
\textbf{NAPP}; which is the set of all real valued functions
$f: \{ 0,1 \}^{*} \rightarrow [0,1]$, that are approximable within 1/$k$,
by a probabilistic nondeterministic transducer, in time poly($n,1^{k}$).
We show that the subset of all Boolean ...
more >>>
The rank of a matrix has been used a number of times to prove lower
bounds on various types of complexity. In particular it has been used
for the size of monotone formulas and monotone span programs. In most
cases that this approach was used, there is not a single ...
more >>>
This survey focuses on the recent (after 1998) developments in
the area of derandomization, with the emphasis on the derandomization of
time-bounded randomized complexity classes.
Let $f$ be a Boolean function. Let $N(f)=\dnf(f)+\dnf(\neg f)$ be the
sum of the minimum number of monomials in a disjunctive normal form
for $f$ and $\neg f$. Let $p(f)$ be the minimum size of a partition
of the Boolean cube into disjoint subcubes such that $f$ is constant on
more >>>
Having good algorithms to verify tautologies as efficiently as possible
is of prime interest in different fields of computer science.
In this paper we present an algorithm for finding Resolution refutations
based on finding tree-like Res(k) refutations. The algorithm is based on
the one of Beame and Pitassi \cite{BP96} ...
more >>>
The problem of predicting a sequence $x_1, x_2,.... $ where each $x_i$ belongs
to a finite alphabet $A$ is considered. Each letter $x_{t+1}$ is predicted
using information on the word $x_1, x_2, ...., x_t $ only. We use the game
theoretical interpretation which can be traced to Laplace where there ...
more >>>
We prove a lower bound of $\Omega(m^2 \log m)$ for the size of
any arithmetic circuit for the product of two matrices,
over the real or complex numbers, as long as the circuit doesn't
use products with field elements of absolute value larger than 1
(where $m \times m$ is ...
more >>>
We prove upper and lower bounds on the power of quantum and stochastic
branching programs of bounded width. We show any NC^1 language can
be accepted exactly by a width-2 quantum branching program of
polynomial length, in contrast to the classical case where width 5 is
necessary unless \NC^1=\ACC. ...
more >>>
We introduce a new Turing machine based concept of time complexity for functions on computable metric spaces. It generalizes the ordinary complexity of word functions and the complexity of real functions studied by Ko \cite{Ko91} et al. Although this definition of ${\rm TIME}$ as the maximum of a generally infinite ... more >>>
We use Lutz's resource bounded measure theory to prove that either \tbf{RP} is
small or \tbf{ZPP} is hard. More precisely we prove that if \tbf{RP} has not p-measure zero, then \tbf{EXP} is contained
in $\mbf{ZPP}/n$.
We also show that if \tbf{RP} has not p-measure zero,
\tbf{EXP} equals ...
more >>>
We investigate the complexity of enumerative approximation of
two elementary problems in linear algebra, computing the rank
and the determinant of a matrix. In particular, we show that
if there exists an enumerator that, given a matrix, outputs a
list of constantly many numbers, one of which is guaranteed to
more >>>
We investigate the decoding problem of Reed-Solomon Codes (aka: the Polynomial Reconstruction Problem -- PR) from a cryptographic hardness perspective. First, following the standard methodology for constructing cryptographically strong primitives, we formulate a decisional intractability assumption related to the PR problem. Then, based on this assumption we show: (i) hardness ... more >>>
In this paper we present some new results on the approximate parallel
construction of Huffman codes. Our algorithm achieves linear work
and logarithmic time, provided that the initial set of elements
is sorted. This is the first parallel algorithm for that problem
with the optimal time and ...
more >>>
We study the proper learnability of axis parallel concept classes
in the PAC learning model and in the exact learning model with
membership and equivalence queries. These classes include union of boxes,
DNF, decision trees and multivariate polynomials.
For the {\it constant} dimensional axis parallel concepts $C$
we ...
more >>>
The method of obtaining lower bounds on the complexity
of Boolean functions for nondeterministic branching programs
is proposed.
A nonlinear lower bound on the complexity of characteristic
functions of Reed--Muller codes for nondeterministic
branching programs is obtained.
The subclass of directed series-parallel graphs plays an important role in
computer science. Whether a given graph is series-parallel is a
well studied problem in algorithmic graph theory, for which fast sequential and
parallel algorithms have been developed in a sequence of papers.
Also methods are known to solve ...
more >>>
Understanding the structure of real-time neural computation in
highly recurrent neural microcircuits that consist of complex
heterogeneous components has remained a serious challenge for
computational modeling. We propose here a new conceptual framework
that strongly differs from all previous approaches based on
computational models inspired ...
more >>>
We prove a quasi-polynomial lower bound on the size of bounded-depth
Frege proofs of the pigeonhole principle $PHP^{m}_n$ where
$m= (1+1/{\polylog n})n$.
This lower bound qualitatively matches the known quasi-polynomial-size
bounded-depth Frege proofs for these principles.
Our technique, which uses a switching lemma argument like other lower bounds
for ...
more >>>
Spielman showed that one can construct error-correcting codes capable
of correcting a constant fraction $\delta << 1/2$ of errors,
and that are encodable/decodable in linear time.
Guruswami and Sudan showed that it is possible to correct
more than $50\%$ of errors (and thus exceed the ``half of the ...
more >>>
We give polynomial time approximation schemes for the problem
of partitioning an input set of n points into a fixed number
k of clusters so as to minimize the sum over all clusters of
the total pairwise distances in a cluster. Our algorithms work
for arbitrary metric spaces as well ...
more >>>
The notion of efficient computation is usually identified in cryptography and complexity with probabilistic polynomial time. However, until recently, in order to obtain \emph{constant-round} zero-knowledge proofs and proofs of knowledge, one had to allow simulators and knowledge-extractors to run in time which is only polynomial {\em on the average} (i.e., ... more >>>
Given a $k$-uniform hypergraph, the E$k$-Vertex-Cover problem is
to find a minimum subset of vertices that ``hits'' every edge. We
show that for every integer $k \geq 5$, E$k$-Vertex-Cover is
NP-hard to approximate within a factor of $(k-3-\epsilon)$, for
an arbitrarily small constant $\epsilon > 0$.
This almost matches the ... more >>>
We consider sets of strings with high Kolmogorov complexity, mainly
in resource-bounded settings but also in the traditional
recursion-theoretic sense. We present efficient reductions, showing
that these sets are hard and complete for various complexity classes.
In particular, in addition to the usual Kolmogorov complexity measure
K, ...
more >>>
This paper presents new results on parallel constructions of the
length-limited prefix-free codes with the minimum redundancy.
We describe an algorithm for the construction of length-limited codes
that works in $O(L)$ time with $n$ processors for $L$ the
maximal codeword length.
We also describe an algorithm for a construction ...
more >>>
An equation over a finite group G is an expression of form
w_1 w_2...w_k = 1_G, where each w_i is a variable, an inverted
variable, or a constant from G; such an equation is satisfiable
if there is a setting of the variables to values in G ...
more >>>
We give a randomized approximation algorithm taking
$O(k^{O(k)}n^{b+O(1)})$ time to count the number of copies of a
$k$-vertex graph with treewidth at most $b$ in an $n$ vertex graph
$G$ with approximation ratio $1/k^{O(k)}$ and error probability
inverse exponential in $n$. This algorithm is based on ...
more >>>
The Constraint Satisfaction Problem (CSP) provides a common framework for many combinatorial problems. The general CSP is known to be NP-complete; however, certain restrictions on a possible form of constraints may affect the complexity, and lead to tractable problem classes. There is, therefore, a fundamental research direction, aiming to separate ... more >>>
Branching programs are a well-established computation
model for boolean functions, especially read-once
branching programs (BP1s) have been studied intensively.
A very simple function $f$ in $n^2$ variables is
exhibited such that both the function $f$ and its negation
$\neg f$ can be computed by $\Sigma^3_p$-circuits,
the ...
more >>>
A wide variety of combinatorial problems can be represented in the form of the Constraint Satisfaction Problem (CSP). The general CSR is known to be NP-complete, however, some restrictions on the possible form of constraints may lead to a tractable subclass. Jeavons and coauthors have shown that the complexity of ... more >>>
We provide a characterization of the resolution
width introduced in the context of Propositional Proof Complexity
in terms of the existential pebble game introduced
in the context of Finite Model Theory. The characterization
is tight and purely combinatorial. Our
first application of this result is a surprising
proof that the ...
more >>>
We show that the counting classes AWPP and APP [Li 1993] are more robust
than previously thought. Our results identify asufficient condition for
a language to be low for PP, and we show that this condition is at least
as weak as other previously studied criteria. Our results imply that
more >>>
We show that Graph Isomorphism is in the complexity class
SPP, and hence it is in $\ParityP$ (in fact, it is in $\ModkP$ for
each $k\geq 2$). We derive this result as a corollary of a more
general result: we show that a {\em generic problem} $\FINDGROUP$ has
an $\FP^{\SPP}$ ...
more >>>
We consider uniform assumptions for derandomization. We provide
intuitive evidence that BPP can be simulated non-trivially in
deterministic time by showing that (1) P \not \subseteq i.o.i.PLOYLOGSPACE
implies BPP \subseteq SUBEXP (2) P \not \subseteq SUBPSPACE implies BPP
= P. These results extend and complement earlier work of ...
more >>>
For every $\epsilon>0$,
we present a {\em deterministic}\/ log-space algorithm
that correctly decides undirected graph connectivity
on all but at most $2^{n^\epsilon}$ of the $n$-vertex graphs.
The same holds for every problem in Symmetric Log-space (i.e., $\SL$).
Making no assumptions (and in particular not assuming the ... more >>>
We study non-Boolean PCPs that have perfect completeness and read
three positions from the proof. For the case when the proof consists
of values from a domain of size d for some integer constant d
>= 2, we construct a non-adaptive PCP with perfect completeness
more >>>
We design a polynomial time approximation scheme (PTAS) for
the problem of Metric MIN-BISECTION of dividing a given finite metric
space into two halves so as to minimize the sum of distances across
that partition. The method of solution depends on a new metric placement
partitioning ...
more >>>
Public-key crypto
Contact: dima@maths.univ-rennes1.fr
Author: Dima Grigoriev
Title: Public-key cryptography and invariant theory
Abstract: Public-key cryptosystems are suggested based on invariants of group
representations
We deal with the problem of a center sending a secret message to
a group of users such that some subset of the users is considered
revoked and should not be able to obtain the content of the
message. We concentrate on the stateless receiver case, where
the users do ...
more >>>
We prove that the subdense instances of MAX-CUT of average
degree Omega(n/logn) posses a polynomial time approximation scheme (PTAS).
We extend this result also to show that the instances of general 2-ary
maximum constraint satisfaction problems (MAX-CSP) of the same average
density have PTASs. Our results ...
more >>>
We show how to efficiently transform any public coin honest verifier
zero knowledge proof system into a proof system that is concurrent
zero-knowledge with respect to any (possibly cheating) verifier via
black box simulation. By efficient we mean that our transformation
incurs only an additive overhead, ...
more >>>
We survey some recent results on the complexity of computing
approximate solutions for instances of the Minimum Bisection problem
and formulate some intriguing and still open questions about the
approximability status of that problem. Some connections to other
optimization problems are also indicated.
We consider the function ensembles emerging from the
construction of Goldreich, Goldwasser and Micali (GGM),
when applied to an arbitrary pseudoramdon generator.
We show that, in general, such functions
fail to yield correlation intractable ensembles.
Specifically, it may happen that, given a description of such a ...
more >>>
We say that a distribution over $\{0,1\}^n$
is almost $k$-wise independent
if its restriction to every $k$ coordinates results in a
distribution that is close to the uniform distribution.
A natural question regarding almost $k$-wise independent
distributions is how close they are to some $k$-wise
independent distribution. We show ...
more >>>
Assuming the inractability of factoring, we show that
the output of the exponentiation modulo a composite function
$f_{N,g}(x)=g^x\bmod N$ (where $N=P\cdot Q$) is pseudorandom,
even when its input is restricted to be half the size.
This result is equivalent to the simultaneous hardness of the upper
half of the bits ...
more >>>
Locally testable codes are error-correcting codes that admit
very efficient codeword tests. Specifically, using a constant
number of (random) queries, non-codewords are rejected with
probability proportional to their distance from the code.
Locally testable codes are believed to be the combinatorial
core of PCPs. However, the relation is ...
more >>>
The use of Nepomnjascij's Theorem in the proofs of independence results
for bounded arithmetic theories is investigated. Using this result and similar ideas, the following statements are proven: (1) At least one of S_1 or TLS does not prove the Matiyasevich-Davis-Robinson-Putnam Theorem and (2) TLS does not prove Sigma^b_{1,1}=Pi^b_{1,1}. Here ...
more >>>
Elementary symmetric polynomials $S_n^k$ are used as a
benchmark for the bounded-depth arithmetic circuit model of computation.
In this work we prove that $S_n^k$ modulo composite numbers $m=p_1p_2$
can be computed with much fewer multiplications than over any field, if
the coefficients of monomials $x_{i_1}x_{i_2}\cdots x_{i_k}$ ...
more >>>
By the breakthrough work of Håstad, several constraint satisfaction
problems are now known to have the following approximation resistance
property: satisfying more clauses than what picking a random
assignment would achieve is NP-hard. This is the case for example for
Max E3-Sat, Max E3-Lin and Max E4-Set Splitting. A notable ...
more >>>
Decision trees are representations of discrete functions with widespread applications in, e.g., complexity theory and data mining and exploration. In these areas it is important to obtain decision trees of small size. The minimization problem for decision trees is known to be NP-hard. In this paper the problem is shown ... more >>>
We show that derandomizing Polynomial Identity Testing is,
essentially, equivalent to proving circuit lower bounds for
NEXP. More precisely, we prove that if one can test in polynomial
time (or, even, nondeterministic subexponential time, infinitely
often) whether a given arithmetic circuit over integers computes an
identically zero polynomial, then either ...
more >>>
A binary sequence A=A(0)A(1).... is called i.o. Turing-autoreducible if A is reducible to itself via an oracle Turing machine that never queries its oracle at the current input, outputs either A(x) or a don't-know symbol on any given input x, and outputs A(x) for infinitely many x. If in addition ... more >>>
We discuss some connections between polynomial time and non-uniform, small depth circuits. A connection is shown with simulating deterministic time in small space. The well known result of Hopcroft, Paul and Valiant showing that space is more powerful than time can be improved, by making an assumption about the connection ... more >>>
We extend Lutz's measure to probabilistic classes, and obtain notions of measure on probabilistic complexity classes
C
such as BPP , BPE and BPEXP. Unlike former attempts,
all our measure notions satisfy all three Lutz's measure axioms, that is
every singleton {L} has measure zero ...
more >>>
We prove exponential lower bounds on the length of 2-query
locally decodable codes. Goldreich et al. recently proved such bounds
for the special case of linear locally decodable codes.
Our proof shows that a 2-query locally decodable code can be decoded
with only 1 quantum query, and then ...
more >>>
We prove two lower bounds on the Statistical Query (SQ) learning
model. The first lower bound is on weak-learning. We prove that for a
concept class of SQ-dimension $d$, a running time of
$\Omega(d/\log d)$ is needed. The SQ-dimension of a concept class is
defined to be the maximum number ...
more >>>
A measure $\mu_{n}$ on $n$-dimensional lattices with
determinant $1$ was introduced about fifty years ago to prove the
existence of lattices which contain points from certain sets. $\mu_{n}$
is the unique probability measure on lattices with determinant $1$ which
is invariant under linear transformations with determinant $1$, where a
more >>>
Would physical laws permit the construction of computing machines
that are capable of solving some problems much faster than the
standard computational model? Recent evidence suggests that this
might be the case in the quantum world. But the question is of
great interest even in the realm of classical physics. ...
more >>>
Zero-knowledge proofs are proofs that are both convincing and yet
yield nothing beyond the validity of the assertion being proven.
Since their introduction about twenty years ago,
zero-knowledge proofs have attracted a lot of attention
and have, in turn, contributed to the development of other
areas of cryptography and complexity ...
more >>>
We consider the problem of testing bipartiteness in the adjacency
matrix model. The best known algorithm, due to Alon and Krivelevich,
distinguishes between bipartite graphs and graphs that are
$\epsilon$-far from bipartite using $O((1/\epsilon^2)polylog(1/epsilon)$
queries. We show that this is optimal for non-adaptive algorithms,
up to the ...
more >>>
We revisit the problem of generalising Lutz's resource bounded measure
(rbm) to small complexity classes.
We propose a definition of a perfect rbm on P,
and give sufficient and necessary conditions for such a measure to exist.
We also revisit $\mu_\tau$, an rbm for P
defined in previous articles (c.f. ...
more >>>
We consider the computational power of constant width polynomial
size cylindrical circuits and nondeterministic branching programs.
We show that every function computed by a Pi2 o MOD o AC0 circuit
can also be computed by a constant width polynomial size cylindrical
nondeterministic branching program (or cylindrical circuit) and
that ...
more >>>
In this paper we study the problem of approximating a boolean
function using the Hamming distance as the approximation measure.
Namely, given a boolean function f, its k-approximation is the
function f^k returning true on the same points in which f does,
plus all points whose Hamming distance from the ...
more >>>
We prove that the exact versions of the domatic number problem are complete
for the levels of the boolean hierarchy over NP. The domatic number
problem, which arises in the area of computer networks, is the problem of
partitioning a given graph into a maximum number ...
more >>>
We describe a deterministic algorithm that, for constant k,
given a k-DNF or k-CNF formula f and a parameter e, runs in time
linear in the size of f and polynomial in 1/e and returns an
estimate of the fraction of satisfying assignments for f up to ...
more >>>
We prove that MAX-3SAT can be approximated in polynomial time
within a factor 9/8 on random instances.
We show that for several natural classes of ``structured'' matrices, including symmetric, circulant, Hankel and Toeplitz matrices, approximating the permanent modulo a prime $p$ is as hard as computing the exact value. Results of this kind are well known for the class of arbitrary matrices; however the techniques used do ... more >>>
We revisit the oft-neglected 'recursive Fourier sampling' (RFS) problem, introduced by Bernstein and Vazirani to prove an oracle separation between BPP and BQP. We show that the known quantum algorithm for RFS is essentially optimal, despite its seemingly wasteful need to uncompute information. This implies that, to place BQP outside ... more >>>
The paper contributes to the systematic study (started by Berman and
Karpinski) of explicit approximability lower bounds for small occurrence optimization
problems. We present parametrized reductions for some packing and
covering problems, including 3-Dimensional Matching, and prove the best
known inapproximability results even for highly restricted versions of ...
more >>>
In the simultaneous message model, two parties holding $n$-bit integers
$x,y$ send messages to a third party, the {\it referee}, enabling
him to compute a boolean function $f(x,y)$. Buhrman et al
[BCWW01] proved the remarkable result that, when $f$ is the
equality function, the referee can solve this problem by ...
more >>>