We prove a quasi-polynomial lower bound on the size of bounded-depth
Frege proofs of the pigeonhole principle $PHP^{m}_n$ where
$m= (1+1/{\polylog n})n$.
This lower bound qualitatively matches the known quasi-polynomial-size
bounded-depth Frege proofs for these principles.
Our technique, which uses a switching lemma argument like other lower bounds
for bounded-depth Frege proofs, is novel in that the tautology to which
this switching lemma is applied remains random throughout the argument.