Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > PIGEONHOLE PRINCIPLE:
Reports tagged with Pigeonhole Principle:
TR97-007 | 21st February 1997
Stasys Jukna

Exponential Lower Bounds for Semantic Resolution


In a semantic resolution proof we operate with clauses only
but allow {\em arbitrary} rules of inference:

C_1 C_2 ... C_m
__________________
C

Consistency is the only requirement. We prove a very simple
exponential lower bound for the size ... more >>>


TR02-010 | 21st January 2002
Albert Atserias, Maria Luisa Bonet

On the Automatizability of Resolution and Related Propositional Proof Systems

Having good algorithms to verify tautologies as efficiently as possible
is of prime interest in different fields of computer science.
In this paper we present an algorithm for finding Resolution refutations
based on finding tree-like Res(k) refutations. The algorithm is based on
the one of Beame and Pitassi \cite{BP96} ... more >>>


TR02-023 | 16th April 2002
Josh Buresh-Oppenheim, Paul Beame, Ran Raz, Ashish Sabharwal

Bounded-depth Frege lower bounds for weaker pigeonhole principles

Revisions: 1

We prove a quasi-polynomial lower bound on the size of bounded-depth
Frege proofs of the pigeonhole principle $PHP^{m}_n$ where
$m= (1+1/{\polylog n})n$.
This lower bound qualitatively matches the known quasi-polynomial-size
bounded-depth Frege proofs for these principles.
Our technique, which uses a switching lemma argument like other lower bounds
for ... more >>>


TR20-012 | 14th February 2020
Dmitry Sokolov

(Semi)Algebraic Proofs over $\{\pm 1\}$ Variables

One of the major open problems in proof complexity is to prove lower bounds on $AC_0[p]$-Frege proof
systems. As a step toward this goal Impagliazzo, Mouli and Pitassi in a recent paper suggested to prove
lower bounds on the size for Polynomial Calculus over the $\{\pm 1\}$ basis. In this ... more >>>


TR21-182 | 30th December 2021
Ilario Bonacina, Maria Luisa Bonet

On the strength of Sherali-Adams and Nullstellensatz as propositional proof systems

The propositional proof system Sherali-Adams (SA) has polynomial-size proofs of the pigeonhole principle (PHP). Similarly, the Nullstellensatz (NS) proof system has polynomial size proofs of the bijective (i.e. both functional and onto) pigeonhole principle (ofPHP). We characterize the strength of these algebraic proof systems in terms of Boolean proof systems ... more >>>


TR23-042 | 3rd April 2023
Johan Håstad

On small-depth Frege proofs for PHP

We study Frege proofs for the one-to-one graph Pigeon Hole Principle
defined on the $n\times n$ grid where $n$ is odd.
We are interested in the case where each formula
in the proof is a depth $d$ formula in the basis given by
$\land$, $\lor$, and $\neg$. We prove that ... more >>>


TR24-010 | 19th January 2024
Noah Fleming, Stefan Grosser, Toniann Pitassi, Robert Robere

Black-Box PPP is not Turing-Closed

The complexity class PPP contains all total search problems many-one reducible to the PIGEON problem, where we are given a succinct encoding of a function mapping n+1 pigeons to n holes, and must output two pigeons that collide in a hole. PPP is one of the “original five” syntactically-defined subclasses ... more >>>


TR24-017 | 23rd January 2024
Siddhartha Jain, Jiawei Li, Robert Robere, Zhiyang Xun

On Pigeonhole Principles and Ramsey in TFNP

The generalized pigeonhole principle says that if tN + 1 pigeons are put into N holes then there must be a hole containing at least t + 1 pigeons. Let t-PPP denote the class of all total NP-search problems reducible to finding such a t-collision of pigeons. We introduce a ... more >>>


TR24-045 | 6th March 2024
Ilario Bonacina, Maria Luisa Bonet, Sam Buss, Massimo Lauria

Redundancy for MaxSAT

The concept of redundancy in SAT lead to more expressive and powerful proof search techniques, e.g. able to express various inprocessing techniques, and to interesting hierarchies of proof systems [Heule et.al’20, Buss-Thapen’19].
We propose a general way to integrate redundancy rules in MaxSAT, that is we define MaxSAT variants of ... more >>>




ISSN 1433-8092 | Imprint