We propose a proof-theoretic approach for gaining evidence that certain parameterized problems are not fixed-parameter tractable. We consider proofs that witness that a given propositional formula cannot be satisfied by a truth assignment that sets at most k variables to true, considering k as the parameter. One could separate the ... more >>>
Knowledge extraction is a fundamental notion, modeling knowledge possession in a computational complexity sense. The notion provides a tool for cryptographic protocol design and analysis, enabling one to argue about the internal state of protocol players. We define and
investigate the relative power of the notion of ``concurrent knowledge-extraction'' ...
more >>>
Holographic algorithms are a novel approach to design polynomial time computations using linear superpositions. Most holographic algorithms are designed with basis vectors of dimension 2. Recently Valiant showed that a basis of dimension 4 can be used to solve in P an interesting (restrictive SAT) counting problem mod 7. This ... more >>>
We survey time hierarchies, with an emphasis on recent attempts to prove hierarchies for semantic classes.
more >>>We show that for each k > 0, MA/1 (MA with 1 bit of advice) does not have circuits of size n^k. This implies the first superlinear circuit lower bounds for the promise versions of the classes MA, AM and ZPP_{||}^{NP}.
We extend our main result in several ways. For ... more >>>
For any odd integer q > 1, we improve the lower bound for general q-query locally decodable codes C: {0,1}^n -> {0,1}^m from m = Omega(n/log n)^{(q+1)/(q-1)} to m = Omega(n^{(q+1)/(q-1)})/log n. For example, for q = 3 we improve the previous bound from Omega(n^2/log^2 n) to Omega(n^2/log n). For ... more >>>
We prove an exponential lower bound on the size of proofs
in the proof system operating with ordered binary decision diagrams
introduced by Atserias, Kolaitis and Vardi. In fact, the lower bound
applies to semantic derivations operating with sets defined by OBDDs.
We do not assume ...
more >>>
It is well-known that every first-order property on words is expressible
using at most three variables. The subclass of properties expressible with
only two variables is also quite interesting and well-studied. We prove
precise structure theorems that characterize the exact expressive power of
first-order logic with two variables on words. ...
more >>>
We demonstrate a family of propositional formulas in conjunctive normal form
so that a formula of size $N$ requires size $2^{\Omega(\sqrt[7]{N/logN})}$
to refute using the tree-like OBDD refutation system of
Atserias, Kolaitis and Vardi
with respect to all variable orderings.
All known symbolic quantifier elimination algorithms for satisfiability
generate ...
more >>>
We continue a study initiated by Krajicek of
a Resolution-like proof system working with clauses of linear
inequalities, R(CP). For all proof systems of this kind
Krajicek proved an exponential lower bound that depends
on the maximal absolute value of coefficients in the given proof and
the maximal clause width.
A cycle cover of a graph is a set of cycles such that every vertex is
part of exactly one cycle. An L-cycle cover is a cycle cover in which
the length of every cycle is in the set L. The weight of a cycle cover
of an edge-weighted graph ...
more >>>
It is well known that $\R^N$ has subspaces of dimension
proportional to $N$ on which the $\ell_1$ norm is equivalent to the
$\ell_2$ norm; however, no explicit constructions are known.
Extending earlier work by Artstein--Avidan and Milman, we prove that
such a subspace can be generated using $O(N)$ random bits.
A t-design for quantum states is a finite set of quantum states with the property of simulating the Haar-measure on quantum states w.r.t. any test that uses at most t copies of a state. We give efficient constructions for approximate quantum t-designs for arbitrary t.
We then show that an ... more >>>
We consider the $k$-layer pointer jumping problem in the one-way
multi-party number-on-the-forehead communication model. In this problem,
the input is a layered directed graph with each vertex having outdegree
$1$, shared amongst $k$ players: Player~$i$ knows all layers {\em
except} the $i$th. The players must communicate, in the order
$1,2,\ldots,k$, ...
more >>>
We initiate a general study of the randomness complexity of
property testing, aimed at reducing the randomness complexity of
testers without (significantly) increasing their query complexity.
One concrete motovation for this study is provided by the
observation that the product of the randomness and query complexity
of a tester determine ...
more >>>
Locally Decodable codes(LDC) support decoding of any particular symbol of the input message by reading constant number of symbols of the codeword, even in presence of constant fraction of errors.
In a recent breakthrough, Yekhanin designed $3$-query LDCs that hugely improve over earlier constructions. Specifically, for a Mersenne prime $p ... more >>>
This paper considers the tradeoff between divisibility and the hardness of approximating
equilibrium prices. Tight bounds are obtained for smooth Fisher markets that obey a relaxed
weak gross substitutes property (WGS). A smooth market is one in which small changes in
prices cause only proportionately small changes ...
more >>>
We investigate the connection between propositional proof systems and their canonical pairs. It is known that simulations between proof systems translate to reductions between their canonical pairs. We focus on the opposite direction and study the following questions.
Q1: Where does the implication [can(f) \le_m can(g) => f \le_s ... more >>>
We give a classification of block-wise symmetric signatures
in the theory of matchgate computations. The main proof technique
is matchgate identities, a.k.a. useful Grassmann-Pl\"{u}cker
identities.
Valiant's theory of holographic algorithms is a novel methodology
to achieve exponential speed-ups in computation. A fundamental
parameter in holographic algorithms is the dimension of the linear basis
vectors.
We completely resolve the problem of the power of higher dimensional
bases. We prove that 2-dimensional bases are universal for
holographic ...
more >>>
In this paper, we introduce the notion of a Public-Key Encryption (PKE) Scheme that is also a Locally-Decodable Error-Correcting Code.
In particular, our construction simultaneously satisfies all of the following properties:
\begin{itemize}
\item
Our Public-Key Encryption is semantically secure under a certain number-theoretic hardness assumption
...
more >>>
In cryptography, there has been tremendous success in building
primitives out of homomorphic semantically-secure encryption
schemes, using homomorphic properties in a black-box way. A few
notable examples of such primitives include items like private
information retrieval schemes and collision-resistant hash functions. In this paper, we illustrate a general
methodology for ...
more >>>
In this paper we will look at restricted versions of the evaluation problem, the model checking problem, the equivalence problem, and the counting problem for quantified propositional formulas, both with and without bound on the number of quantifier alternations. The restrictions are such that we consider formulas in conjunctive normal-form ... more >>>
We introduce symmetric Datalog, a syntactic restriction of linear
Datalog and show that its expressive power is exactly that of
restricted symmetric monotone Krom SNP. The deep result of
Reingold on the complexity of undirected
connectivity suffices to show that symmetric Datalog queries can be
evaluated in logarithmic space. We ...
more >>>
We present algebraic conditions on constraint languages \Gamma
that ensure the hardness of the constraint satisfaction problem
CSP(\Gamma) for complexity classes L, NL, P, NP and Mod_pL.
These criteria also give non-expressibility results for various
restrictions of Datalog. Furthermore, we show that if
CSP(\Gamma) is not first-order definable then it ...
more >>>
We show a construction of a PCP with both sub-constant error and
almost-linear size. Specifically, for some constant alpha in (0,1),
we construct a PCP verifier for checking satisfiability of
Boolean formulas that on input of size n uses log n + O((log
n)^{1-alpha}) random bits to query a constant ...
more >>>
The main aim of randomized search heuristics is to produce good approximations of optimal solutions within a small amount of time. In contrast to numerous experimental results, there are only a few theoretical results on this subject.
We consider the approximation ability of randomized search for the class of ...
more >>>
Implicit algorithms work on their input's characteristic functions and should solve problems heuristically by as few and as efficient functional operations as possible. Together with an appropriate data structure to represent the characteristic functions they yield heuristics which are successfully applied in numerous areas. It is known that implicit algorithms ... more >>>
P. Gopalan, P. G. Kolaitis, E. N. Maneva and C. H. Papadimitriou
studied in [Gopalan et al., ICALP2006] connectivity properties of the
solution-space of Boolean formulas, and investigated complexity issues
on connectivity problems in Schaefer's framework [Schaefer, STOC1978].
A set S of logical relations is Schaefer if all relations in ...
more >>>
We present a deterministic logspace algorithm for solving s-t connectivity on directed graphs if (i) we are given a stationary distribution for random walk on the graph and (ii) the random walk which starts at the source vertex $s$ has polynomial mixing time. This result generalizes the recent deterministic logspace ... more >>>
An interactive-PCP (say, for the membership $x \in L$) is a
proof that can be verified by reading only one of its bits, with the
help of a very short interactive-proof.
We show that for membership in some languages $L$, there are
interactive-PCPs that are significantly shorter than the known
more >>>
We define propositional quantum Frege proof systems and compare it
with classical Frege proof systems.
We recover the first linear programming bound of McEliece, Rodemich, Rumsey, and Welch for binary error-correcting codes and designs via a covering argument. It is possible to show, interpreting the following notions appropriately, that if a code has a large distance, then its dual has a small covering radius and, ... more >>>
A construction of Bourgain gave the first 2-source
extractor to break the min-entropy rate 1/2 barrier. In this note,
we write an exposition of his result, giving a high level way to view
his extractor construction.
We also include a proof of a generalization of Vazirani's XOR lemma
that seems ...
more >>>
We consider the problem of counting the number of spanning trees in planar graphs. We prove tight bounds on the complexity of the problem, both in general and especially in the modular setting. We exhibit the problem to be complete for Logspace when the modulus is 2^k, for constant k. ... more >>>
We prove the first time-space tradeoffs for counting the number of solutions to an NP problem modulo small integers, and also improve upon the known time-space tradeoffs for Sat. Let m be a positive integer, and define MODm-Sat to be the problem of determining if a given Boolean formula has ... more >>>
We study in this paper randomized algorithms to approximate the mixed volume of well-presented convex compact sets.
Our main result is a poly-time algorithm which approximates $V(K_1,...,K_n)$ with multiplicative error $e^n$ and
with better rates if the affine dimensions of most of the sets $K_i$ are small.\\
Our approach is ...
more >>>
We study the round complexity of various cryptographic protocols. Our main result is a tight lower bound on the round complexity of any fully-black-box construction of a statistically-hiding commitment scheme from one-way permutations, and even from trapdoor permutations. This lower bound matches the round complexity of the statistically-hiding commitment scheme ... more >>>
Binary search trees are a fundamental data structure and their height
plays a key role in the analysis of divide-and-conquer algorithms like
quicksort. Their worst-case height is linear; their average height,
whose exact value is one of the best-studied problems in average-case
complexity, is logarithmic. We analyze their smoothed height ...
more >>>
A k-query Locally Decodable Code (LDC) encodes an n-bit message x as an N-bit codeword C(x), such that one can probabilistically recover any bit x_i of the message by querying only k bits of the codeword C(x), even after some constant fraction of codeword bits has been corrupted. The major ... more >>>
We introduce an algebraic proof system Pcrk, which combines together {\em Polynomial Calculus} (Pc) and {\em $k$-DNF Resolution} (Resk).
This is a natural generalization to Resk of the well-known {\em Polynomial Calculus with Resolution} (Pcr) system which combines together Pc and Resolution.
We study the complexity of proofs in such ... more >>>
In this paper we consider the problem of determining whether an
unknown arithmetic circuit, for which we have oracle access,
computes the identically zero polynomial. Our focus is on depth-3
circuits with a bounded top fan-in. We obtain the following
results.
1. A quasi-polynomial time deterministic black-box identity testing algorithm ... more >>>
Motivated by the study of Parallel Repetition and also by the Unique
Games Conjecture, we investigate the value of the ``Odd Cycle Games''
under parallel repetition. Using tools from discrete harmonic
analysis, we show that after $d$ rounds on the cycle of length $m$,
the value of the game is ...
more >>>
The complexity of the Black-White Pebbling Game has remained an open problem for 30 years. It was devised to capture the power of non-deterministic space bounded computation. Since then it has been continuously studied and applied to problems in diverse areas of computer science including VLSI design and more recently ... more >>>
We study the complexity of the following algorithmic problem: Given a Boolean function $f$ and a finite set of Boolean functions $B$, decide if there is a circuit with basis $B$ that computes $f$. We show that if both $f$ and all functions in $B$ are given by their truth-table, ... more >>>
Satisfiability algorithms have become one of the most practical and successful approaches for solving a variety of real-world problems, including hardware verification, experimental design, planning and diagnosis problems. The main reason for the success is due to highly optimized algorithms for SAT based on resolution. The most successful of these ... more >>>
Program checking, program self-correcting and program self-testing
were pioneered by [Blum and Kannan] and [Blum, Luby and Rubinfeld] in
the mid eighties as a new way to gain confidence in software, by
considering program correctness on an input by input basis rather than
full program verification. Work in ...
more >>>
The Earth Mover Distance (EMD) between two equal-size sets
of points in R^d is defined to be the minimum cost of a
bipartite matching between the two pointsets. It is a natural metric
for comparing sets of features, and as such, it has received
significant interest in computer vision. Motivated ...
more >>>
Ordered binary decision diagrams (OBDDs) are nowadays the most common
dynamic data structure or representation type for Boolean functions.
Among the many areas of application are verification, model checking,
computer aided design, relational algebra, and symbolic graph algorithms.
Although many even exponential lower bounds on the OBDD size of Boolean ...
more >>>
We develop a new technique of proving lower bounds for the randomized communication complexity of boolean functions in the multiparty 'Number on the Forehead' model. Our method is based on the notion of voting polynomial degree of functions and extends the Degree-Discrepancy Lemma in the recent work of Sherstov (STOC'07). ... more >>>
In this paper we introduce a variant of pushdown dimension called bounded pushdown (BPD) dimension, that measures the density of information contained in a sequence, relative to a BPD automata, i.e. a finite state machine equipped with an extra infinite memory stack, with the additional requirement that every input symbol ... more >>>
It is well known that every finite Abelian group $G$ can be
represented as a product of cyclic groups: $G=G_1\times
G_2\times\cdots G_t$, where each $G_i$ is a cyclic group of size
$p^j$ for some prime $p$ and integer $j\ge 1$. If $a_i$ is the
generator of the cyclic group of ...
more >>>
Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have played a significant role in the theory of cryptography. However, lack of efficiency has prevented them from being used in practice. One of the roots of this inefficiency is that non-interactive zero-knowledge proofs have been constructed for general NP-complete languages such as ... more >>>
We study a model of graph related formulae that we call
the \emph{Constraint-Graph model}. A
constraint-graph is a labeled multi-graph (a graph where loops
and parallel edges are allowed), where each edge $e$ is labeled
by a distinct Boolean variable and every vertex is
associate with a Boolean function over ...
more >>>
We consider the next step from boolean conjunctive normal forms to
arbitrary constraint satisfaction problems (with arbitrary constraints), namely "generalised clause-sets" (or "sets of no-goods"), which allow negative literals "v <> e" for variables v and values e --- this level of generality appears to be the right level for ...
more >>>
In this paper we construct explicit deterministic extractors from polynomial sources, namely from distributions sampled by low degree multivariate polynomials over finite fields. This naturally generalizes previous work on extraction from affine sources (which are degree 1 polynomials). A direct consequence is a deterministic extractor for distributions sampled by polynomial ... more >>>
Motivated by a recent study of Zimand (22nd CCC, 2007),
we consider the average-case complexity of property testing
(focusing, for clarity, on testing properties of Boolean strings).
We make two observations:
1) In the context of average-case analysis with respect to
the uniform distribution (on all strings of ...
more >>>
We demonstrate a two-player communication problem that can be solved in the one-way quantum model by a 0-error protocol of cost O(log n) but requires exponentially more communication in the classical interactive (two-way) model.
more >>>We study multiplayer games in which the participants have access to
only limited randomness. This constrains both the algorithms used to
compute equilibria (they should use little or no randomness) as well
as the mixed strategies that the participants are capable of playing
(these should be sparse). We frame algorithmic ...
more >>>
We show that random sparse binary linear codes are locally testable and locally decodable (under any linear encoding) with constant queries (with probability tending to one). By sparse, we mean that the code should have only polynomially many codewords. Our results are the first to show that local decodability and ... more >>>
Given linear two codes R,C, their tensor product $R \otimes C$
consists of all matrices whose rows are codewords of R and whose
columns are codewords of C. The product $R \otimes C$ is said to
be robust if for every matrix M that is far from $R \otimes C$
more >>>
Given two codes R,C, their tensor product $R \otimes C$ consists of all matrices whose rows are codewords of R and whose columns are codewords of C. The product $R \otimes C$ is said to be robust if for every matrix M that is far from $R \otimes C$ it ... more >>>
We conjecture that for every perfect matching $M$ of the $d$-dimensional
$n$-vertex hypercube, $d\geq 2$, there exists a second perfect matching $M'$
such that the union of $M$ and $M'$ forms a Hamiltonian circuit of the
$d$-dimensional hypercube. We prove this conjecture in the case where there are
two dimensions ...
more >>>
A basic question in complexity theory is whether the computational
resources required for solving k independent instances of the same
problem scale as k times the resources required for one instance.
We investigate this question in various models of classical
communication complexity.
We define a new measure, the subdistribution bound, ... more >>>
We show that if a language $L$ has a 4-round, black-box, computational zero-knowledge proof system with negligible soundness error, then $\bar L \in MA$. Assuming the polynomial hierarchy does not collapse, this means, in particular, that $NP$-complete languages do not have 4-round zero-knowledge proofs (at least with respect to black-box ... more >>>
The problem of image matching is to find for two given digital images $A$ and $B$
an admissible transformation that converts image $A$ as close as possible to $B$.
This problem becomes hard if the space of admissible transformations is too complex.
Consequently, in many real applications, like the ones ...
more >>>
In this paper we propose a methodology for determining approximate Nash equilibria of non-cooperative bimatrix games and, based on that, we provide a polynomial time algorithm that computes $\frac{1}{3} + \frac{1}{p(n)} $ -approximate equilibria, where $p(n)$ is a polynomial controlled by our algorithm and proportional to its running time. The ... more >>>
The isomorphism problem for planar graphs is known to be efficiently solvable. For planar 3-connected graphs, the isomorphism problem can be solved by efficient parallel algorithms, it is in the class AC^1.
In this paper we improve the upper bound for planar 3-connected graphs to unambiguous logspace, in fact to ... more >>>
In 1998, Impagliazzo and Wigderson proved a hardness vs. randomness tradeoff for BPP in the {\em uniform setting}, which was subsequently extended to give optimal tradeoffs for the full range of possible hardness assumptions by Trevisan and Vadhan (in a slightly weaker setting). In 2003, Gutfreund, Shaltiel and Ta-Shma proved ... more >>>
\begin{abstract}
The Fast Johnson-Lindenstrauss Transform was recently discovered by
Ailon and Chazelle as a technique for performing fast dimension
reduction from $\ell_2^d$ to $\ell_2^k$ in time $O(\max\{d\log d,
k^3\})$, where $k$ is the target lower dimension. This beats the
naive $O(dk)$ achieved by multiplying by random dense matrices, as
noticed ...
more >>>
We show that several reducibility notions coincide when applied to the
Graph Isomorphism (GI) problem. In particular we show that if a set is
many-one logspace reducible to GI, then it is in fact many-one AC^0
reducible to GI. For the case of Turing reducibilities we show that ...
more >>>
We solve an open problem of Kushilevitz and Nisan
(1997) in communication complexity. Let $R_{eps}(f)$
and $D^{mu}_{eps}(f)$ denote the randomized and
$mu$-distributional communication complexities of
f, respectively ($eps$ a small constant). Yao's
well-known Minimax Principle states that
R_{eps}(f) = max_{mu} { D^{mu}_{eps}(f) }.
Kushilevitz and Nisan (1997) ask whether ...
more >>>
We study the polynomial reconstruction problem for low-degree
multivariate polynomials over finite fields. In the GF[2] version of this problem, we are given a set of points on the hypercube and target values $f(x)$ for each of these points, with the promise that there is a polynomial over GF[2] of ...
more >>>
We give the first exponential separation between quantum and
classical multi-party
communication complexity in the (non-interactive) one-way and
simultaneous message
passing settings.
For every k, we demonstrate a relational communication problem
between k parties
that can be solved exactly by a quantum simultaneous message passing
protocol of
cost ...
more >>>
We give an explicit construction of pseudorandom
generators against low degree polynomials over finite fields. We
show that the sum of $2^d$ small-biased generators with error
$\epsilon^{2^{O(d)}}$ is a pseudorandom generator against degree $d$
polynomials with error $\epsilon$. This gives a generator with seed
length $2^{O(d)} \log{(n/\epsilon)}$. Our construction follows ...
more >>>
We consider the problem of testing graph expansion in the bounded degree model. We give a property tester that given a graph with degree bound $d$, an expansion bound $\alpha$, and a parameter $\epsilon > 0$, accepts the graph with high probability if its expansion is more than $\alpha$, and ... more >>>
We describe a general method for testing whether a function on n input variables has a concise representation. The approach combines ideas from the junta test of Fischer et al. with ideas from learning theory, and yields property testers that make poly(s/epsilon) queries (independent of n) for Boolean function classes ... more >>>
We develop and study the complexity of propositional proof systems of varying strength extending resolution by allowing it to operate with disjunctions of linear equations instead of clauses. We demonstrate polynomial-size refutations for hard tautologies like the pigeonhole principle, Tseitin graph tautologies and the clique-coloring tautologies in these proof systems. ... more >>>
In this paper we study the one-way multi-party communication model,
in which every party speaks exactly once in its turn. For every
fixed $k$, we prove a tight lower bound of
$\Omega{n^{1/(k-1)}}$ on the probabilistic communication
complexity of pointer jumping in a $k$-layered tree, where the
pointers of the $i$-th ...
more >>>
We propose a new general primitive called lossy trapdoor
functions (lossy TDFs), and realize it under a variety of different
number theoretic assumptions, including hardness of the decisional
Diffie-Hellman (DDH) problem and the worst-case hardness of
standard lattice problems.
Using lossy TDFs, we develop a new approach for constructing ... more >>>
We present a new approach to constructing pseudorandom generators that fool low-degree polynomials over finite fields, based on the Gowers norm. Using this approach, we obtain the following main constructions of explicitly computable generators $G : \F^s \to \F^n$ that fool polynomials over a prime field $\F$:
\begin{enumerate}
\item a ...
more >>>
The folk theorem suggests that finding Nash Equilibria
in repeated games should be easier than in one-shot games. In
contrast, we show that the problem of finding any (epsilon) Nash
equilibrium for a three-player infinitely-repeated game is
computationally intractable (even when all payoffs are in
{-1,0,-1}), unless all of PPAD ...
more >>>
We study property testing in the model of bounded degree graphs. It
is well known that in this model many graph properties cannot be
tested with a constant number of queries and it seems reasonable to
conjecture that only few are testable with o(sqrt{n}) queries.
Therefore in this paper ...
more >>>
Is it possible for two intelligent beings to communicate meaningfully, without any common language or background? This question has interest on its own, but is especially relevant in the context of modern computational infrastructures where an increase in the diversity of computers is making the task of inter-computer interaction increasingly ... more >>>
We study multilinear formulas, monotone arithmetic circuits, maximal-partition discrepancy, best-partition communication complexity and extractors constructions. We start by proving lower bounds for an explicit polynomial for the following three subclasses of syntactically multilinear arithmetic formulas over the field C and the set of variables {x1,...,xn}:
1. Noise-resistant. A syntactically multilinear ... more >>>
We give an explicit (in particular, deterministic polynomial time)
construction of subspaces $X
\subseteq \R^N$ of dimension $(1-o(1))N$ such that for every $x \in X$,
$$(\log N)^{-O(\log\log\log N)} \sqrt{N}\, \|x\|_2 \leq \|x\|_1 \leq \sqrt{N}\, \|x\|_2.$$
If we are allowed to use $N^{1/\log\log N}\leq N^{o(1)}$ random bits
and ...
more >>>
The parallel complexity class NC^1 has many equivalent models such as
polynomial size formulae and bounded width branching
programs. Caussinus et al. \cite{CMTV} considered arithmetizations of
two of these classes, #NC^1 and #BWBP. We further this study to
include arithmetization of other classes. In particular, we show that
counting paths ...
more >>>
We study the notion of learning in an oblivious changing environment. Existing online learning algorithms which minimize regret are shown to converge to the average of all locally optimal solutions. We propose a new performance metric, strengthening the standard metric of regret, to capture convergence to locally optimal solutions, and ... more >>>
We study the average-case hardness of the class NP against
deterministic polynomial time algorithms. We prove that there exists
some constant $\mu > 0$ such that if there is some language in NP
for which no deterministic polynomial time algorithm can decide L
correctly on a $1- (log n)^{-\mu}$ fraction ...
more >>>
Linearity tests are randomized algorithms which have oracle access to the truth table of some function $f$,
which are supposed to distinguish between linear functions and functions which are far from linear. Linearity tests were first introduced by Blum, Luby and Rubenfeld in \cite{BLR93}, and were later used in the ...
more >>>
Algorithmic meta theorems are algorithmic results that apply to whole families of combinatorial problems, instead of just specific problems. These families are usually defined in terms of logic and graph theory. An archetypal algorithmic meta theorem is Courcelle's Theorem, which states that all graph properties definable in monadic second-order logic ... more >>>
In this paper, we consider the weighted online set k-multicover problem. In this problem, we have an universe V of elements, a family SS of subsets of V with a positive real cost for every S\in SS, and a ``coverage factor'' (positive integer) k. A subset \{i_0,i_1,\ldots\ \subseteq V of ... more >>>
The Counting Constraint Satisfaction Problem (#CSP(H)) over a finite
relational structure H can be expressed as follows: given a
relational structure G over the same vocabulary,
determine the number of homomorphisms from G to H.
In this paper we characterize relational structures H for which
#CSP(H) can be solved in ...
more >>>
The purpose of this paper is to provide efficient algorithms that decide membership for classes of several Boolean hierarchies for which efficiency (or even decidability) were previously not known. We develop new forbidden-chain characterizations for the single levels of these hierarchies and obtain the following results:
1. The classes of ... more >>>
\begin{abstract}
Given a monomial ideal $I=\angle{m_1,m_2,\cdots,m_k}$ where $m_i$
are monomials and a polynomial $f$ as an arithmetic circuit the
\emph{Ideal Membership Problem } is to test if $f\in I$. We study
this problem and show the following results.
\begin{itemize}
\item[(a)] If the ideal $I=\angle{m_1,m_2,\cdots,m_k}$ for a
more >>>
We study the notion of "instance compressibility" of NP problems [Harnik-Naor06], closely related to the notion of kernelization in parameterized complexity theory [Downey-Fellows99, Flum-Grohe06, Niedermeier06]. A language $L$ in NP is instance compressible if there
is a polynomial-time computable function $f$ and a set $A$ such that
for each instance ...
more >>>
We describe a public-key cryptosystem with worst-case/average case
equivalence. The cryptosystem has an amortized plaintext to
ciphertext expansion of $O(n)$, relies on the hardness of the
$\tilde O(n^2)$-unique shortest vector problem for lattices, and
requires a public key of size at most $O(n^4)$ bits. The new
cryptosystem generalizes a conceptually ...
more >>>
For Boolean functions that are $\epsilon$-far from the set of linear functions, we study the lower bound on the rejection probability (denoted $\textsc{rej}(\epsilon)$) of the linearity test suggested by Blum, Luby and Rubinfeld. The interest in this problem is partly due to its relation to PCP constructions and hardness of ... more >>>
Ever since the fundamental work of Cook from 1971, satisfiability has been recognized as a central problem in computational complexity. It is widely believed to be intractable, and yet till recently even a linear-time, logarithmic-space algorithm for satisfiability was not ruled out. In 1997 Fortnow, building on earlier work by ... more >>>
In a breakthrough result, Razborov (2003) gave optimal
lower bounds on the communication complexity of every function f
of the form f(x,y)=D(|x AND y|) for some D:{0,1,...,n}->{0,1}, in
the bounded-error quantum model with and without prior entanglement.
This was proved by the _multidimensional_ discrepancy method. We
give an entirely ...
more >>>
We study a multi-player one-round game termed Stackelberg Network Pricing Game, in which a leader can set prices for a subset of m pricable edges in a graph. The other edges have a fixed cost. Based on the leader's decision one or more followers optimize a polynomial-time solvable combinatorial minimization ... more >>>
An errorless heuristic is an algorithm that on all inputs returns either the correct answer or the special symbol "I don't know." A central question in average-case complexity is whether every distributional decision problem in NP has an errorless heuristic scheme: This is an algorithm that, for every δ > ... more >>>
We give a self-contained exposition of selected results in additive
combinatorics over the group {0,1}^n. In particular, we prove the
celebrated theorems known as the Balog-Szemeredi-Gowers theorem ('94 and '98) and
the
Freiman-Ruzsa theorem ('73 and '99), leading to the remarkable result
by Samorodnitsky ('07) that linear transformations are efficiently ...
more >>>
In this paper we present a new approximation algorithm for the MAX ACYCLIC SUBGRAPH problem. Given an instance where the maximum acyclic subgraph contains (1/2 + delta) fraction of all edges, our algorithm finds an acyclic subgraph with (1/2 + Omega(delta/ log n)) fraction of all edges.
more >>>In the set cover problem we are given a collection of $m$ sets whose union covers $[n] = \{1,\ldots,n\}$ and must find a minimum-sized subcollection whose union still covers $[n]$. We investigate the approximability of set cover by an approximation ratio that depends only on $m$ and observe that, for ... more >>>
Combining classical approximability questions with parameterized complexity, we introduce a theory of parameterized approximability.
The main intention of this theory is to deal with the efficient approximation of small cost solutions for optimisation problems.
The matrix cuts of Lov{\'{a}}sz and Schrijver are methods for tightening linear relaxations of zero-one programs by the addition of new linear inequalities. We address the question of how many new inequalities are necessary to approximate certain combinatorial problems with strong guarantees, and to solve certain instances of Boolean satisfiability.
... more >>>Suppose that every k points in a n point metric space X are D-distortion embeddable into l_1. We give upper and lower bounds on the distortion required to embed the entire space X into l_1. This is a natural mathematical question and is also motivated by the study of relaxations ... more >>>
We give a polynomial time construction of binary codes with the best
currently known trade-off between rate and error-correction
radius. Specifically, we obtain linear codes over fixed alphabets
that can be list decoded in polynomial time up to the so called
Blokh-Zyablov bound. Our work ...
more >>>
Branching programs are computation models
measuring the space of (Turing machine) computations.
Read-once branching programs (BP1s) are the
most general model where each graph-theoretical path is the computation
path for some input. Exponential lower bounds on the size of read-once
branching programs are known since a long time. Nevertheless, there ...
more >>>
We argue that the symmetries of a property being tested play a
central role in property testing. We support this assertion in the
context of algebraic functions, by examining properties of functions
mapping a vector space $\K^n$ over a field $\K$ to a subfield $\F$.
We consider $\F$-linear properties that ...
more >>>
The sign-rank of a real matrix M is the least rank
of a matrix R in which every entry has the same sign as the
corresponding entry of M. We determine the sign-rank of every
matrix of the form M=[ D(|x AND y|) ]_{x,y}, where
D:{0,1,...,n}->{-1,+1} is given and ...
more >>>
In the undirected Edge-Disjoint Paths problem with Congestion
(EDPwC), we are given an undirected graph with $V$ nodes, a set of
terminal pairs and an integer $c$. The objective is to route as many
terminal pairs as possible, subject to the constraint that at most
$c$ demands can be routed ...
more >>>
We present a greatly simplified proof of the length-space
trade-off result for resolution in Hertel and Pitassi (2007), and
also prove a couple of other theorems in the same vein. We point
out two important ingredients needed for our proofs to work, and
discuss possible conclusions to be drawn regarding ...
more >>>
An error correcting code is said to be locally testable if there is a test that checks whether a given string is a codeword, or rather far from the code, by reading only a constant number of symbols of the string. Locally Testable Codes (LTCs) were first systematically studied by ... more >>>
Let A_1,...,A_n be events in a probability space. The
approximate inclusion-exclusion problem, due to Linial and
Nisan (1990), is to estimate Pr[A_1 OR ... OR A_n] given
Pr[AND_{i\in S}A_i] for all |S|<=k. Kahn et al. (1996) solve
this problem optimally for each k. We study the following more
general question: ...
more >>>
We assume the existence of a function f that is computable in polynomial time but its inverse function is not computable in randomized average-case polynomial time. The cryptographic setting is, however, different: even for a weak one-way function, every possible adversary should fail on a polynomial fraction of inputs. Nevertheless, ... more >>>
We study the problem of testing the expansion of
graphs with bounded degree d in sublinear time. A graph is said to
be an \alpha-expander if every vertex set U \subset V of size at
most |V|/2 has a neighborhood of size at least \alpha|U|.
We show that the algorithm ... more >>>
We consider <i>minimum equivalent digraph</i> (<i>directed network</i>) problem (also known as the <i>strong transitive reduction</i>), its maximum optimization variant, and some extensions of those two types of problems. We prove the existence of polynomial time approximation algorithms with ratios 1.5 for all the minimization problems and 2 for all the ... more >>>
We consider the k-Directed Steiner Forest} (k-dsf) problem:
given a directed graph G=(V,E) with edge costs, a collection D subseteq V \times V
of ordered node pairs, and an integer k leq |D|, find a minimum cost subgraph
H of G
that contains an st-path for (at least) k ...
more >>>
In this paper we show that lower bounds for bounded depth arithmetic circuits imply derandomization of polynomial identity testing for bounded depth arithmetic circuits. More formally, if there exists an explicit polynomial f(x_1,...,x_m) that cannot be computed by a depth d arithmetic circuit of small size then there exists ... more >>>
In this paper we study the problem of explicitly constructing a
{\em dimension expander} raised by \cite{BISW}: Let $\mathbb{F}^n$
be the $n$ dimensional linear space over the field $\mathbb{F}$.
Find a small (ideally constant) set of linear transformations from
$\F^n$ to itself $\{A_i\}_{i \in I}$ such that for every linear
more >>>
Let $p$ be a fixed prime number, and $N$ be a large integer.
The 'Inverse Conjecture for the Gowers norm' states that if the "$d$-th Gowers norm" of a function $f:\F_p^N \to \F_p$ is non-negligible, that is larger than a constant independent of $N$, then $f$ can be non-trivially ...
more >>>
In this paper we give the first deterministic polynomial time algorithm for testing whether a {\em diagonal} depth-$3$ circuit $C(\arg{x}{n})$ (i.e. $C$ is a sum of powers of linear functions) is zero. We also prove an exponential lower bound showing that such a circuit will compute determinant or permanent only ... more >>>
For any given Boolean formula $\phi(x_1,\dots,x_n)$, one can
efficiently construct (using \emph{arithmetization}) a low-degree
polynomial $p(x_1,\dots,x_n)$ that agrees with $\phi$ over all
points in the Boolean cube $\{0,1\}^n$; the constructed polynomial
$p$ can be interpreted as a polynomial over an arbitrary field
$\mathbb{F}$. The problem ...
more >>>
We show that tree-like OBDD proofs of unsatisfiability require an exponential increase ($s \mapsto 2^{s^{\Omega(1)}}$) in proof size to simulate unrestricted resolution, and that unrestricted OBDD proofs of unsatisfiability require an almost-exponential increase ($s \mapsto 2^{ 2^{\left( \log s \right)^{\Omega(1)}}}$) in proof size to simulate $\Res{O(\log n)}$. The ``OBDD proof ... more >>>
We initiate the study of the tradeoff between the {\em length} of a
probabilistically checkable proof of proximity (PCPP) and the
maximal {\em soundness} that can be guaranteed by a $3$-query
verifier with oracle access to the proof. Our main observation is
that a verifier limited to querying a short ...
more >>>
This paper addresses the problem of testing whether a Boolean-valued function f is a halfspace, i.e. a function of the form f(x)=sgn(w ⋅ x - θ). We consider halfspaces over the continuous domain R^n (endowed with the standard multivariate Gaussian distribution) as well as halfspaces over the Boolean cube {-1,1}^n ... more >>>
We give an algorithm that with high probability properly learns random monotone t(n)-term
DNF under the uniform distribution on the Boolean cube {0, 1}^n. For any polynomially bounded function t(n) <= poly(n) the algorithm runs in time poly(n, 1/eps) and with high probability outputs an eps accurate monotone DNF ...
more >>>
Hardness amplification is the fundamental task of
converting a $\delta$-hard function $f : {0,1}^n ->
{0,1}$ into a $(1/2-\eps)$-hard function $Amp(f)$,
where $f$ is $\gamma$-hard if small circuits fail to
compute $f$ on at least a $\gamma$ fraction of the
inputs. Typically, $\eps,\delta$ are small (and
$\delta=2^{-k}$ captures the case ...
more >>>
We revisit the connection between boosting algorithms and hard-core set constructions discovered by Klivans and Servedio. We present a boosting algorithm with a certain smoothness property that is necessary for hard-core set constructions: the distributions it generates do not put too much weight on any single example. We then use ... more >>>
We prove that the sum of $d$ small-bias generators $L
: \F^s \to \F^n$ fools degree-$d$ polynomials in $n$
variables over a prime field $\F$, for any fixed
degree $d$ and field $\F$, including $\F = \F_2 =
{0,1}$.
Our result improves on both the work by Bogdanov and
Viola ...
more >>>
We show how to construct a variety of ``trapdoor'' cryptographic tools
assuming the worst-case hardness of standard lattice problems (such as
approximating the shortest nonzero vector to within small factors).
The applications include trapdoor functions with \emph{preimage
sampling}, simple and efficient ``hash-and-sign'' digital signature
schemes, universally composable oblivious transfer, ...
more >>>
We prove space hierarchy and separation results for randomized and other semantic models of computation with advice. Previous works on hierarchy and separation theorems for such models focused on time as the resource. We obtain tighter results with space as the resource. Our main theorems are the following.
Let <i>s</i>(<i>n</i>) ... more >>>
We introduce the notion of a Canonical Tester for a class of properties, that is, a tester strong and
general enough that ``a property is testable if and only if the
Canonical Tester tests it''. We construct a Canonical Tester
for the class of symmetric properties of one or two
more >>>
We study graphical games where the payoff function of each player satisfies one of four types of symmetries in the actions of his neighbors. We establish that deciding the existence of a pure Nash equilibrium is NP-hard in graphical games with each of the four types of symmetry. Using a ... more >>>
Among others, refining the methods of [Fortnow and Santhanam, ECCC Report TR07-096] we improve a result of this paper and show for any parameterized problem with a ``linear weak OR'' and with NP-hard underlying classical problem that there is no polynomial reduction from the problem to itself that assigns to ... more >>>