Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



WEBSITE > HOME:
About the ECCC

What we do and why

The Electronic Colloquium on Computational Complexity (ECCC) was established in 1994 as a forum and repository for the rapid and widespread interchange of ideas, techniques, and research in computational complexity. Posting on the ECCC has the status of a technical report. The Electronic Colloquium on Computational Complexity welcomes papers, short notes, and surveys, with
  • relevance to the theory of computation,
  • clear mathematical profile, and
  • strictly mathematical format.

Central topics

  • models of computation and their complexity.
  • complexity bounds and trade-offs (with the emphasis on lower bounds).
  • complexity theoretic aspects of specific areas including coding theory, combinatorics, cryptography, game theory, logic, machine learning, optimization, property testing, and quantum computation.
For more details see the Call for Papers.

More reading

Here are some papers on the idea and concept of electronic colloquia and ECCC.

Latest News
9th April 2023 12:21

Service Interruption

In the last few days, a Denial of Service attack was launched on universities in Israel, leading the administrators of the Israel Academic network to block access to it from the global internet. Consequently, websites such as ECCC have been accessible only from within the Israeli and European academic networks.

It seems that this blocking was just removed, and we hope it will not be put back in the future.

Needless to say, deciding on such blocking is not in our control, but we do apologize for this disruption of service.


-> Older news


Latest Report Titles
Latest Reports
TR25-187 | 20th November 2025
Jiatu Li

On the Time Complexity of Feasible Proofs

Quantifying and understanding the complexity of mathematical proofs is a fundamental question in proof complexity. At the qualitative level, bounded arithmetic formalizes the notion of feasible proofs, where all functions implicit in proofs are from certain complexity classes. For instance, Cook's theory PV (STOC'75) captures proofs using only polynomial-time computable ... more >>>


TR25-186 | 19th November 2025
Aran Nayebi

Intrinsic Barriers and Practical Pathways for Human-AI Alignment: An Agreement-Based Complexity Analysis

We formalize AI alignment as a multi-objective optimization problem called $\langle M,N,\varepsilon,\delta\rangle$-agreement, in which a set of $N$ agents (including humans) must reach approximate ($\varepsilon$) agreement across $M$ candidate objectives, with probability at least $1-\delta$.
Analyzing communication complexity, we prove an information-theoretic lower bound showing that once either $M$ or ... more >>>


TR25-185 | 19th November 2025
Renato Ferreira Pinto Jr., Diptaksho Palit, Sofya Raskhodnikova

Computational Complexity in Property Testing

We initiate a systematic study of the computational complexity of property testing, focusing on the relationship between query and time complexity. While traditional work in property testing has emphasized query complexity—often via information-theoretic techniques—relatively little is known about the computational hardness of property testers. Our goal is to chart the ... more >>>


-> Older reports


ISSN 1433-8092 | Imprint