Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



WEBSITE > HOME:
About the ECCC

What we do and why

The Electronic Colloquium on Computational Complexity (ECCC) was established in 1994 as a forum and repository for the rapid and widespread interchange of ideas, techniques, and research in computational complexity. Posting on the ECCC has the status of a technical report. The Electronic Colloquium on Computational Complexity welcomes papers, short notes, and surveys, with
  • relevance to the theory of computation,
  • clear mathematical profile, and
  • strictly mathematical format.

Central topics

  • models of computation and their complexity.
  • complexity bounds and trade-offs (with the emphasis on lower bounds).
  • complexity theoretic aspects of specific areas including coding theory, combinatorics, cryptography, game theory, logic, machine learning, optimization, property testing, and quantum computation.
For more details see the Call for Papers.

More reading

Here are some papers on the idea and concept of electronic colloquia and ECCC.

Latest News
9th April 2023 12:21

Service Interruption

In the last few days, a Denial of Service attack was launched on universities in Israel, leading the administrators of the Israel Academic network to block access to it from the global internet. Consequently, websites such as ECCC have been accessible only from within the Israeli and European academic networks.

It seems that this blocking was just removed, and we hope it will not be put back in the future.

Needless to say, deciding on such blocking is not in our control, but we do apologize for this disruption of service.


-> Older news


Latest Report Titles
Latest Reports
TR26-028 | 18th February 2026
Rohit Chatterjee, Yunqi Li, Prashant Nalini Vasudevan

Weak Zero-Knowledge and One-Way Functions

We study the implications of the existence of weak Zero-Knowledge (ZK) protocols for worst-case hard languages. These are protocols that have completeness, soundness, and zero-knowledge errors (denoted $\epsilon_c$, $\epsilon_s$, and $\epsilon_z$, respectively) that might not be negligible. Under the assumption that there are worst-case hard languages in NP, we show ... more >>>


TR26-027 | 19th February 2026
Vishnu Iyer, Siddhartha Jain, Stephen Jordan, Rolando Somma

Efficient quantum circuits for high-dimensional representations of SU(n) and Ramanujan quantum expanders

We present efficient quantum circuits that implement high-dimensional unitary irreducible representations (irreps) of SU(n), where n>=2 is constant. For dimension N and error ?, the number of quantum gates in our circuits is polynomial in log(N) and log(1/?). Our construction relies on the Jordan-Schwinger representation, which allows us to realize ... more >>>


TR26-026 | 20th February 2026
Sanyam Agarwal, Sagnik Dutta, Anurag Pandey, Himanshu Shukla

When Hilbert approximates: A Strong Nullstellensatz for Approximate Polynomial Satisfiability

Guo, Saxena, and Sinhababu (TOC'18, CCC'18) defined a natural, approximative analog of the polynomial system satisfiability problem, which they called approximate polynomial satisfiability (APS). They proved algebraic and geometric properties of it and showed an NP-hardness lower bound and a PSPACE upper bound for it. They further established how the ... more >>>


-> Older reports


ISSN 1433-8092 | Imprint