Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > RAFAEL PASS:
All reports by Author Rafael Pass:

TR24-095 | 23rd May 2024
Yanyi Liu, Noam Mazor, Rafael Pass

A Note on Zero-Knowledge for NP and One-Way Functions

Revisions: 1

We present a simple alternative exposition of the the recent result of Hirahara and Nanashima (STOC’24) showing that one-way functions exist if (1) every language in NP has a zero-knowledge proof/argument and (2) ZKA contains non-trivial languages. Our presentation does not rely on meta-complexity and we hope it may be ... more >>>


TR24-055 | 12th March 2024
Marshall Ball, Yanyi Liu, Noam Mazor, Rafael Pass

Kolmogorov Comes to Cryptomania: On Interactive Kolmogorov Complexity and Key-Agreement

Only a handful candidates for computational assumptions that imply secure key-agreement protocols (KA) are known, and even fewer are believed to be quantum safe. In this paper, we present a new hardness assumption---the worst-case hardness of a promise problem related to an interactive version of Kolmogorov Complexity.
Roughly speaking, the ... more >>>


TR24-053 | 10th March 2024
Noam Mazor, Rafael Pass

Gap MCSP is not (Levin) NP-complete in Obfustopia

Revisions: 1

We demonstrate that under believable cryptographic hardness assumptions, Gap versions of standard meta-complexity problems, such as the Minimum Circuit Size problem (MCSP) and the Minimum Time-Bounded Kolmogorov Complexity problem (MKTP) are not NP-complete w.r.t. Levin (i.e., witness-preserving many-to-one) reductions.

In more detail:
- Assuming the existence of indistinguishability obfuscation, and ... more >>>


TR24-051 | 5th March 2024
Yanyi Liu, Rafael Pass

A Direct PRF Construction from Kolmogorov Complexity

While classic result in the 1980s establish that one-way functions (OWFs) imply the existence of pseudorandom generators (PRGs) which in turn imply pseudorandom functions (PRFs), the constructions (most notably the one from OWFs to PRGs) is complicated and inefficient.

Consequently, researchers have developed alternative \emph{direct} constructions of PRFs from various ... more >>>


TR24-003 | 2nd January 2024
Noam Mazor, Rafael Pass

Search-to-Decision Reductions for Kolmogorov Complexity

Revisions: 1

A long-standing open problem dating back to the 1960s is whether there exists a search-to-decision reduction for the time-bounded Kolmogorov complexity problem - that is, the problem of determining whether the length of the shortest time-$t$ program generating a given string $x$ is at most $s$.

In this work, we ... more >>>


TR23-211 | 23rd December 2023
Rafael Pass, Oren Renard

Characterizing the Power of (Persistent) Randomness in Log-space

We study the problem of whether \emph{persistent} randomness is helpful for polynomial-time algorithms that only use \emph{logarithmic} space. In more detail, we consider the class $\searchBPLs$, of \emph{search}-problems that are solvable by a polynomial-time Probabilistic Logspace TMs with \emph{2-way} access (i.e., with multiple, as opposed to one-time, access) to a ... more >>>


TR23-192 | 28th November 2023
Noam Mazor, Rafael Pass

A Note On the Universality of Black-box MKtP Solvers

Revisions: 1

The relationships between various meta-complexity problems are not well understood in the worst-case regime, including whether the search version is harder than the decision version, whether the hardness scales with the ``threshold", and how the hardness of different meta-complexity problems relate to one another, and to the task of function ... more >>>


TR23-175 | 15th November 2023
Noam Mazor, Rafael Pass

The Non-Uniform Perebor Conjecture for Time-Bounded Kolmogorov Complexity is False

The Perebor (Russian for “brute-force search”) conjectures, which date back to the 1950s and 1960s are some of the oldest conjectures in complexity theory. The conjectures are a stronger form of the NP ? = P conjecture (which they predate) and state that for “meta-complexity” problems, such as the Time-bounded ... more >>>


TR23-152 | 14th October 2023
Yanyi Liu, Rafael Pass

One-way Functions and Hardness of (Probabilistic) Time-Bounded Kolmogorov Complexity w.r.t. Samplable Distributions

Consider the recently introduced notion of \emph{probabilistic
time-bounded Kolmogorov Complexity}, pK^t (Goldberg et al,
CCC'22), and let MpK^tP denote the language of pairs (x,k) such that pK^t(x) \leq k.
We show the equivalence of the following:
- MpK^{poly}P is (mildly) hard-on-average w.r.t. \emph{any} samplable
distribution $\D$;
- ... more >>>


TR23-143 | 22nd September 2023
Noam Mazor, Rafael Pass

Counting Unpredictable Bits: A Simple PRG from One-way Functions

Revisions: 3

A central result in the theory of Cryptography, by Hastad, Imagliazzo, Luby and Levin [SICOMP’99], demonstrates that the existence one-way functions (OWF) implies the existence of pseudo-random generators (PRGs). Despite the fundamental importance of this result, and several elegant improvements/simplifications, analyses of constructions of PRGs from OWFs remain complex (both ... more >>>


TR23-103 | 12th July 2023
Yanyi Liu, Rafael Pass

On One-way Functions and the Worst-case Hardness of Time-Bounded Kolmogorov Complexity

Revisions: 1

Whether one-way functions (OWF) exist is arguably the most important
problem in Cryptography, and beyond. While lots of candidate
constructions of one-way functions are known, and recently also
problems whose average-case hardness characterize the existence of
OWFs have been demonstrated, the question of
whether there exists some \emph{worst-case hard problem} ... more >>>




ISSN 1433-8092 | Imprint