Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #3 to TR23-143 | 17th July 2024 10:41

Counting Unpredictable Bits: A Simple PRG from One-way Functions

RSS-Feed




Revision #3
Authors: Noam Mazor, Rafael Pass
Accepted on: 17th July 2024 10:41
Downloads: 119
Keywords: 


Abstract:

A central result in the theory of Cryptography, by Hastad, Imagliazzo, Luby and Levin [SICOMP’99], demonstrates that the existence one-way functions (OWF) implies the existence of pseudo-random generators (PRGs). Despite the fundamental importance of this result, and several elegant improvements/simplifications, analyses of constructions of PRGs from OWFs remain complex (both conceptually and technically).

Our goal is to provide a construction of a PRG from OWFs with a simple proof of security; we thus focus on the setting of non-uniform security (i.e., we start off with a OWF secure against non-uniform PPT, and we aim to get a PRG secure against non-uniform PPT).

Our main result is a construction of a PRG from OWFs with a self-contained, simple, proof of security, relying only on the Goldreich-Levin Theorem (and the Chernoff bound). Although our main goal is simplicity, the construction, and a variant there-of, also improves the efficiency—in terms of invocations and seed lengths—of the state-of-the-art constructions due to [Haitner-Reingold-Vadhan, STOC’10] and [Vadhan-Zheng, STOC’12], by a factor O(log^2 n).

The key novelty in our analysis is a generalization of the Blum-Micali [FOCS’82] notion of unpredictabilty—rather than requiring that every bit in the output of a function is unpredictable, we count how many unpredictable bits a function has, and we show that any OWF on n input bits (after hashing the input and the output) has n + O(log n) unpredictable output bits. Such unpredictable bits can next be “extracted” into a pseudorandom string using standard techniques.


Revision #2 to TR23-143 | 12th July 2024 12:32

Counting Unpredictable Bits: A Simple PRG from One-way Functions





Revision #2
Authors: Noam Mazor, Rafael Pass
Accepted on: 12th July 2024 12:32
Downloads: 90
Keywords: 


Abstract:

A central result in the theory of Cryptography, by Hastad, Imagliazzo, Luby and Levin [SICOMP’99], demonstrates that the existence one-way functions (OWF) implies the existence of pseudo-random generators (PRGs). Despite the fundamental importance of this result, and several elegant improvements/simplifications, analyses of constructions of PRGs from OWFs remain complex (both conceptually and technically).

Our goal is to provide a construction of a PRG from OWFs with a simple proof of security; we thus focus on the setting of non-uniform security (i.e., we start off with a OWF secure against non-uniform PPT, and we aim to get a PRG secure against non-uniform PPT).

Our main result is a construction of a PRG from OWFs with a self-contained, simple, proof of security, relying only on the Goldreich-Levin Theorem (and the Chernoff bound). Although our main goal is simplicity, the construction, and a variant there-of, also improves the efficiency—in terms of invocations and seed lengths—of the state-of-the-art constructions due to [Haitner-Reingold-Vadhan, STOC’10] and [Vadhan-Zheng, STOC’12], by a factor O(log^2 n).

The key novelty in our analysis is a generalization of the Blum-Micali [FOCS’82] notion of unpredictabilty—rather than requiring that every bit in the output of a function is unpredictable, we count how many unpredictable bits a function has, and we show that any OWF on n input bits (after hashing the input and the output) has n + O(log n) unpredictable output bits. Such unpredictable bits can next be “extracted” into a pseudorandom string using standard techniques.


Revision #1 to TR23-143 | 22nd September 2023 08:07

Counting Unpredictable Bits: A Simple PRG from One-way Functions





Revision #1
Authors: Noam Mazor, Rafael Pass
Accepted on: 22nd September 2023 08:07
Downloads: 523
Keywords: 


Abstract:

A central result in the theory of Cryptography, by Hastad, Imagliazzo, Luby and Levin [SICOMP’99], demonstrates that the existence one-way functions (OWF) implies the existence of pseudo-random generators (PRGs). Despite the fundamental importance of this result, and several elegant improvements/simplifications, analyses of constructions of PRGs from OWFs remain complex (both conceptually and technically).

Our goal is to provide a construction of a PRG from OWFs with a simple proof of security; we thus focus on the setting of non-uniform security (i.e., we start off with a OWF secure against non-uniform PPT, and we aim to get a PRG secure against non-uniform PPT).

Our main result is a construction of a PRG from OWFs with a self-contained, simple, proof of security, relying only on the Goldreich-Levin Theorem (and the Chernoff bound). Although our main goal is simplicity, the construction, and a variant there-of, also improves the efficiency—in terms of invocations and seed lengths—of the state-of-the-art constructions due to [Haitner-Reingold-Vadhan, STOC’10] and [Vadhan-Zheng, STOC’12], by a factor O(log^2 n).

The key novelty in our analysis is a generalization of the Blum-Micali [FOCS’82] notion of unpredictabilty—rather than requiring that every bit in the output of a function is unpredictable, we count how many unpredictable bits a function has, and we show that any OWF on n input bits (after hashing the input and the output) has n + O(log n) unpredictable output bits. Such unpredictable bits can next be “extracted” into a pseudorandom string using standard techniques.


Paper:

TR23-143 | 22nd September 2023 00:31

Counting Unpredictable Bits: A Simple PRG from One-way Functions





TR23-143
Authors: Noam Mazor, Rafael Pass
Publication: 22nd September 2023 08:03
Downloads: 342
Keywords: 


Abstract:

A central result in the theory of Cryptography, by Hastad, Imagliazzo, Luby and Levin [SICOMP’99], demonstrates that the existence one-way functions (OWF) implies the existence of pseudo-random generators (PRGs). Despite the fundamental importance of this result, and several elegant improvements/simplifications, analyses of constructions of PRGs from OWFs remain complex (both conceptually and technically).

Our goal is to provide a construction of a PRG from OWFs with a simple proof of security; we thus focus on the setting of non-uniform security (i.e., we start off with a OWF secure against non-uniform PPT, and we aim to get a PRG secure against non-uniform PPT).

Our main result is a construction of a PRG from OWFs with a self-contained, simple, proof of security, relying only on the Goldreich-Levin Theorem (and the Chernoff bound). Although our main goal is simplicity, the construction, and a variant there-of, also improves the efficiency—in terms of invocations and seed lengths—of the state-of-the-art constructions due to [Haitner-Reingold-Vadhan, STOC’10] and [Vadhan-Zheng, STOC’12], by a factor O(log^2 n).

The key novelty in our analysis is a generalization of the Blum-Micali [FOCS’82] notion of unpredictabilty—rather than requiring that every bit in the output of a function is unpredictable, we count how many unpredictable bits a function has, and we show that any OWF on n input bits (after hashing the input and the output) has n + O(log n) unpredictable output bits. Such unpredictable bits can next be “extracted” into a pseudorandom string using standard techniques.



ISSN 1433-8092 | Imprint