Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

All reports by Author Pavel Hrubes:

TR17-048 | 14th March 2017
Pavel Hrubes, Pavel Pudlak

A note on monotone real circuits

We show that if a Boolean function $f:\{0,1\}^n\to \{0,1\}$ can be computed by a monotone real circuit of size $s$ using $k$-ary monotone gates then $f$ can be computed by a monotone real circuit of size $O(sn^{k-2})$ which uses unary or binary monotone gates only. This partially solves an open ... more >>>

TR17-042 | 6th March 2017
Pavel Hrubes, Pavel Pudlak

Random formulas, monotone circuits, and interpolation

We prove new lower bounds on the sizes of proofs in the Cutting Plane proof system, using a concept that we call "unsatisfiability certificate". This approach is, essentially, equivalent to the well-known feasible interpolation method, but is applicable to CNF formulas that do not seem suitable for interpolation. Specifically, we ... more >>>

TR15-164 | 13th October 2015
Pavel Hrubes, Amir Yehudayoff

On isoperimetric profiles and computational complexity

The isoperimetric profile of a graph is a function that measures, for an integer $k$, the size of the smallest edge boundary over all sets of vertices of size $k$. We observe a connection between isoperimetric profiles and computational complexity. We illustrate this connection by an example from communication complexity, ... more >>>

TR15-067 | 21st April 2015
Pavel Hrubes

On hardness of multilinearization, and VNP completeness in characteristics two

For a boolean function $f:\{0,1\}^n\rightarrow \{0,1\}$, let $\hat{f}$ be the unique multilinear polynomial such that $f(x)=\hat{f}(x)$ holds for every $x\in \{0,1\}^n$. We show that, assuming $\hbox{VP}\not=\hbox{VNP}$, there exists a polynomial-time computable $f$ such that $\hat{f}$ requires super-polynomial arithmetic circuits. In fact, this $f$ can be taken as a monotone 2-CNF, ... more >>>

TR14-020 | 18th February 2014
Pavel Hrubes, Anup Rao

Circuits with Medium Fan-In

Revisions: 1

We consider boolean circuits in which every gate may compute an arbitrary boolean function of $k$ other gates, for a parameter $k$. We give an explicit function $f:\bits^n \rightarrow \bits$ that requires at least $\Omega(\log^2 n)$ non-input gates when $k = 2n/3$. When the circuit is restricted to being depth ... more >>>

TR13-128 | 16th September 2013
Pavel Hrubes

A note on semantic cutting planes

We show that the semantic cutting planes proof system has feasible interpolation via monotone real circuits. This gives an exponential lower bound on proof length in the system.

We also pose the following problem: can every multivariate non-decreasing function be expressed as a composition of non-decreasing functions in two ... more >>>

TR12-121 | 25th September 2012
Pavel Hrubes

A note on the real $\tau$-conjecture and the distribution of roots

Revisions: 2

Koiran's real $\tau$-conjecture asserts that if a non-zero real polynomial can be written as $f=\sum_{i=1}^{p}\prod_{j=1}^{q}f_{ij},$
where each $f_{ij}$ contains at most $k$ monomials, then the number of distinct real roots of $f$ is polynomial in $pqk$. We show that the conjecture implies quite a strong property of the ... more >>>

TR12-061 | 16th May 2012
Pavel Hrubes, Amir Yehudayoff

Formulas are exponentially stronger than monotone circuits in non-commutative setting

We give an example of a non-commutative monotone polynomial f which can be computed by a polynomial-size non-commutative formula, but every monotone non-commutative circuit computing f must have an exponential size. In the non-commutative setting this gives, a fortiori, an exponential separation between monotone and general formulas, monotone and general ... more >>>

TR11-174 | 30th December 2011
Pavel Hrubes, Iddo Tzameret

Short Proofs for the Determinant Identities

Revisions: 1

We study arithmetic proof systems $\mathbb{P}_c(\mathbb{F})$ and $\mathbb{P}_f(\mathbb{F})$ operating with arithmetic circuits and arithmetic formulas, respectively, that prove polynomial identities over a field $\mathbb{F}$. We establish a series of structural theorems about these proof systems, the main one stating that $\mathbb{P}_c(\mathbb{F})$ proofs can be balanced: if a polynomial identity of ... more >>>

TR11-088 | 7th June 2011
Pavel Hrubes

How much commutativity is needed to prove polynomial identities?

Let $f$ be a non-commutative polynomial such that $f=0$ if we assume that the variables in $f$ commute. Let $Q(f)$ be the smallest $k$ such that there exist polynomials $g_1,g_1', g_2, g_2',\dots, g_k, g_k' $ with \[f\in I([g_1,g_1'], [g_2, g_2'],\dots, [g_k, g_k'] )\,,\]
where $[g,h]=gh-hg$. Then $Q(f)\leq {n\choose 2}$, where ... more >>>

ISSN 1433-8092 | Imprint