Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > MRINAL KUMAR:
All reports by Author Mrinal Kumar:

TR18-132 | 17th July 2018
Mrinal Kumar, Ramprasad Saptharishi, Anamay Tengse

Near-optimal Bootstrapping of Hitting Sets for Algebraic Circuits

Revisions: 2

The classical lemma of Ore-DeMillo-Lipton-Schwartz-Zippel states that any nonzero polynomial $f(x_1,\ldots, x_n)$ of degree at most $s$ will evaluate to a nonzero value at some point on a grid $S^n \subseteq \mathbb{F}^n$ with $|S| > s$. Thus, there is a deterministic polynomial identity test (PIT) for all degree-$s$ size-$s$ ... more >>>


TR18-081 | 20th April 2018
Abhishek Bhrushundi, Prahladh Harsha, Pooya Hatami, Swastik Kopparty, Mrinal Kumar

On Multilinear Forms: Bias, Correlation, and Tensor Rank

Revisions: 1

In this paper, we prove new relations between the bias of multilinear forms, the correlation between multilinear forms and lower degree polynomials, and the rank of tensors over $GF(2)= \{0,1\}$. We show the following results for multilinear forms and tensors.

1. Correlation bounds : We show that a random $d$-linear ... more >>>


TR18-068 | 8th April 2018
Mrinal Kumar

On top fan-in vs formal degree for depth-3 arithmetic circuits

Revisions: 1

We show that over the field of complex numbers, every homogeneous polynomial of degree $d$ can be approximated (in the border complexity sense) by a depth-$3$ arithmetic circuit of top fan-in at most $d+1$. This is quite surprising since there exist homogeneous polynomials $P$ on $n$ variables of degree $2$, ... more >>>


TR18-052 | 16th March 2018
Chi-Ning Chou, Mrinal Kumar, Noam Solomon

Some Closure Results for Polynomial Factorization and Applications

In a sequence of fundamental results in the 80's, Kaltofen showed that factors of multivariate polynomials with small arithmetic circuits have small arithmetic circuits. In other words, the complexity class $VP$ is closed under taking factors. A natural question in this context is to understand if other natural classes of ... more >>>


TR17-124 | 6th August 2017
Mrinal Kumar, Ben Lee Volk

An Almost Quadratic Lower Bound for Syntactically Multilinear Arithmetic Circuits

Revisions: 2

We prove a lower bound of $\Omega(n^2/\log^2 n)$ on the size of any syntactically multilinear arithmetic circuit computing some explicit multilinear polynomial $f(x_1, \ldots, x_n)$. Our approach expands and improves upon a result of Raz, Shpilka and Yehudayoff [RSY08], who proved a lower bound of $\Omega(n^{4/3}/\log^2 n)$ for the same ... more >>>


TR17-028 | 17th February 2017
Mrinal Kumar

A quadratic lower bound for homogeneous algebraic branching programs

Revisions: 1

An algebraic branching program (ABP) is a directed acyclic graph, with a start vertex $s$, and end vertex $t$ and each edge having a weight which is an affine form in $\F[x_1, x_2, \ldots, x_n]$. An ABP computes a polynomial in a natural way, as the sum of weights of ... more >>>


TR17-009 | 19th January 2017
Joshua Grochow, Mrinal Kumar, Michael Saks, Shubhangi Saraf

Towards an algebraic natural proofs barrier via polynomial identity testing

We observe that a certain kind of algebraic proof - which covers essentially all known algebraic circuit lower bounds to date - cannot be used to prove lower bounds against VP if and only if what we call succinct hitting sets exist for VP. This is analogous to the Razborov-Rudich ... more >>>


TR16-137 | 3rd September 2016
Mrinal Kumar, Ramprasad Saptharishi

Finer separations between shallow arithmetic circuits

In this paper, we show that there is a family of polynomials $\{P_n\}$, where $P_n$ is a polynomial in $n$ variables of degree at most $d = O(\log^2 n)$, such that

1. $P_n$ can be computed by linear sized homogeneous depth-$5$ circuits.

2. $P_n$ can be computed by ... more >>>


TR16-096 | 14th June 2016
Suryajith Chillara, Mrinal Kumar, Ramprasad Saptharishi, V Vinay

The Chasm at Depth Four, and Tensor Rank : Old results, new insights

Revisions: 2

Agrawal and Vinay [AV08] showed how any polynomial size arithmetic circuit can be thought of as a depth four arithmetic circuit of subexponential size. The resulting circuit size in this simulation was more carefully analyzed by Korian [Koiran] and subsequently by Tavenas [Tav13]. We provide a simple proof of this ... more >>>


TR16-045 | 22nd March 2016
Michael Forbes, Mrinal Kumar, Ramprasad Saptharishi

Functional lower bounds for arithmetic circuits and connections to boolean circuit complexity

We say that a circuit $C$ over a field $F$ functionally computes an $n$-variate polynomial $P \in F[x_1, x_2, \ldots, x_n]$ if for every $x \in \{0,1\}^n$ we have that $C(x) = P(x)$. This is in contrast to {syntactically} computing $P$, when $C \equiv P$ as formal polynomials. In this ... more >>>


TR15-194 | 30th November 2015
Mrinal Kumar, Shubhangi Saraf

Arithmetic circuits with locally low algebraic rank

Revisions: 1

In recent years there has been a flurry of activity proving lower bounds for
homogeneous depth-4 arithmetic circuits [GKKS13, FLMS14, KLSS14, KS14c], which has brought us very close to statements that are known to imply VP $\neq$ VNP. It is a big question to go beyond homogeneity, and in ... more >>>


TR15-109 | 1st July 2015
Mrinal Kumar, Ramprasad Saptharishi

An exponential lower bound for homogeneous depth-5 circuits over finite fields

In this paper, we show exponential lower bounds for the class of homogeneous depth-$5$ circuits over all small finite fields. More formally, we show that there is an explicit family $\{P_d : d \in N\}$ of polynomials in $VNP$, where $P_d$ is of degree $d$ in $n = d^{O(1)}$ variables, ... more >>>


TR15-071 | 23rd April 2015
Mrinal Kumar, Shubhangi Saraf

Sums of products of polynomials in few variables : lower bounds and polynomial identity testing

We study the complexity of representing polynomials as a sum of products of polynomials in few variables. More precisely, we study representations of the form $$P = \sum_{i = 1}^T \prod_{j = 1}^d Q_{ij}$$
such that each $Q_{ij}$ is an arbitrary polynomial that depends on at most $s$ variables.

... more >>>

TR15-047 | 2nd April 2015
Swastik Kopparty, Mrinal Kumar, Michael Saks

Efficient indexing of necklaces and irreducible polynomials over finite fields

We study the problem of indexing irreducible polynomials over finite fields, and give the first efficient algorithm for this problem. Specifically, we show the existence of poly(n, log q)-size circuits that compute a bijection between {1, ... , |S|} and the set S of all irreducible, monic, univariate polynomials of ... more >>>


TR14-045 | 7th April 2014
Mrinal Kumar, Shubhangi Saraf

On the power of homogeneous depth 4 arithmetic circuits

Revisions: 2

We prove exponential lower bounds on the size of homogeneous depth 4 arithmetic circuits computing an explicit polynomial in $VP$. Our results hold for the {\it Iterated Matrix Multiplication} polynomial - in particular we show that any homogeneous depth 4 circuit computing the $(1,1)$ entry in the product of $n$ ... more >>>


TR13-181 | 20th December 2013
Mrinal Kumar, Shubhangi Saraf

Superpolynomial lower bounds for general homogeneous depth 4 arithmetic circuits

In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree $n$ in $n^2$ variables such that any homogeneous depth 4 arithmetic circuit computing it must have size $n^{\Omega(\log \log n)}$.

Our results extend ... more >>>


TR13-153 | 8th November 2013
Mrinal Kumar, Shubhangi Saraf

The Limits of Depth Reduction for Arithmetic Formulas: It's all about the top fan-in

In recent years, a very exciting and promising method for proving lower bounds for arithmetic circuits has been proposed. This method combines the method of {\it depth reduction} developed in the works of Agrawal-Vinay [AV08], Koiran [Koi12] and Tavenas [Tav13], and the use of the shifted partial derivative complexity measure ... more >>>


TR13-068 | 3rd May 2013
Mrinal Kumar, Shubhangi Saraf

Lower Bounds for Depth 4 Homogenous Circuits with Bounded Top Fanin

We study the class of homogenous $\Sigma\Pi\Sigma\Pi(r)$ circuits, which are depth 4 homogenous circuits with top fanin bounded by $r$. We show that any homogenous $\Sigma\Pi\Sigma\Pi(r)$ circuit computing the permanent of an $n\times n$ matrix must have size at least $\exp\left(n^{\Omega(1/r)}\right)$.

In a recent result, Gupta, Kamath, Kayal and ... more >>>


TR13-028 | 14th February 2013
Mrinal Kumar, Gaurav Maheshwari, Jayalal Sarma

Arithmetic Circuit Lower Bounds via MaxRank

We introduce the polynomial coefficient matrix and identify maximum rank of this matrix under variable substitution as a complexity measure for multivariate polynomials. We use our techniques to prove
super-polynomial lower bounds against several classes of non-multilinear arithmetic circuits. In particular, we obtain the following results :

$\bullet$ As ... more >>>




ISSN 1433-8092 | Imprint