In a recent work, Cormode, Dall'Agnol, Gur and Hickey (CCC, 2024) introduced the model of Zero-Knowledge Streaming Interactive Proofs (zkSIPs).
Loosely speaking, such proof-systems enable a prover to convince astreaming verifier that the input $x$, to which it has read-once streaming access, satisfies some property, in such a way that ...
more >>>
A sequence of recent works, concluding with Mu et al. (Eurocrypt, 2024) has shown that every problem $\Pi$ admitting a non-interactive statistical zero-knowledge proof (NISZK) has an efficient zero-knowledge batch verification protocol. Namely, an NISZK protocol for proving that $x_1,\dots,x_k \in \Pi$ with communication that only scales poly-logarithmically with $k$. ... more >>>
A zero-knowledge proof enables a prover to convince a verifier that $x \in S$, without revealing anything beyond this fact. By running a zero-knowledge proof $k$ times, it is possible to prove (still in zero-knowledge) that $k$ separate instances $x_1,\dots,x_k$ are all in $S$. However, this increases the communication by ... more >>>
We study the circuit complexity of the multiselection problem: given an input string $x \in \{0,1\}^n$ along with indices $i_1,\dots,i_q \in [n]$, output $(x_{i_1},\dots,x_{i_q})$. A trivial lower bound for the circuit size is the input length $n + q \cdot \log(n)$, but the straightforward construction has size $\Theta(q \cdot n)$.
... more >>>Batch proofs are proof systems that convince a verifier that $x_1,\dots, x_t \in L$, for some $NP$ language $L$, with communication that is much shorter than sending the $t$ witnesses. In the case of statistical soundness (where the cheating prover is unbounded but honest prover is efficient), interactive batch proofs ... more >>>
Succinct arguments are proof systems that allow a powerful, but untrusted, prover to convince a weak verifier that an input $x$ belongs to a language $L \in NP$, with communication that is much shorter than the $NP$ witness. Such arguments, which grew out of the theory literature, are now drawing ... more >>>
Modern cryptography fundamentally relies on the assumption that the adversary trying to break the scheme is computationally bounded. This assumption lets us construct cryptographic protocols and primitives that are known to be impossible otherwise. In this work we explore the effect of bounding the adversary's power in other information theoretic ... more >>>
Shortly after the introduction of zero-knowledge proofs, Goldreich, Micali and Wigderson (CRYPTO '86) demonstrated their wide applicability by constructing zero-knowledge proofs for the NP-complete problem of graph 3-coloring. A long-standing open question has been whether parallel repetition of their protocol preserves zero knowledge. In this work, we answer this question ... more >>>
Suppose that a problem $\Pi$ has a statistical zero-knowledge (SZK) proof with communication complexity $m$. The question of batch verification for SZK asks whether one can prove that $k$ instances $x_1,\ldots,x_k$ all belong to $\Pi$ with a statistical zero-knowledge proof whose communication complexity is better than $k \cdot m$ (which ... more >>>
Suppose Alice wants to convince Bob of the correctness of k NP statements. Alice could send k witnesses to Bob, but as k grows the communication becomes prohibitive. Is it possible to convince Bob using smaller communication (without making cryptographic assumptions or bounding the computational power of a malicious Alice)? ... more >>>
A statistical zero-knowledge proof (SZK) for a problem $\Pi$ enables a computationally unbounded prover to convince a polynomial-time verifier that $x \in \Pi$ without revealing any additional information about $x$ to the verifier, in a strong information-theoretic sense.
Suppose, however, that the prover wishes to convince the verifier that $k$ ... more >>>
The Exponential-Time Hypothesis ($ETH$) is a strengthening of the $\mathcal{P} \neq \mathcal{NP}$ conjecture, stating that $3\text{-}SAT$ on $n$ variables cannot be solved in time $2^{\epsilon\cdot n}$, for some $\epsilon>0$. In recent years, analogous hypotheses that are ``exponentially-strong'' forms of other classical complexity conjectures (such as $\mathcal{NP}\not\subseteq\mathcal{BPP}$ or $co\text{-}\mathcal{NP}\not\subseteq \mathcal{NP}$) have ... more >>>
Interactive oracle proofs (IOPs) are a hybrid between interactive proofs and PCPs. In an IOP the prover is allowed to interact with a verifier (like in an interactive proof) by sending relatively long messages to the verifier, who in turn is only allowed to query a few of the bits ... more >>>
The problem of verifiable delegation of computation considers a setting in which a client wishes to outsource an expensive computation to a powerful, but untrusted, server. Since the client does not trust the server, we would like the server to certify the correctness of the result. Delegation has emerged as ... more >>>
Consider a setting in which a prover wants to convince a verifier of the correctness of k NP statements. For example, the prover wants to convince the verifier that k given integers N_1,...,N_k are all RSA moduli (i.e., products of equal length primes). Clearly this problem can be solved by ... more >>>
Since its inception, public-key encryption (PKE) has been one of the main cornerstones of cryptography. A central goal in cryptographic research is to understand the foundations of public-key encryption and in particular, base its existence on a natural and generic complexity-theoretic assumption. An intriguing candidate for such an assumption is ... more >>>
Locally decodable codes (LDCs) and locally correctable codes (LCCs) are error-correcting codes in which individual bits of the message and codeword, respectively, can be recovered by querying only few bits from a noisy codeword. These codes have found numerous applications both in theory and in practice.
A natural relaxation of ... more >>>
Collision resistant hash functions are functions that shrink their input, but for which it is computationally infeasible to find a collision, namely two strings that hash to the same value (although collisions are abundant).
In this work we study multi-collision resistant hash functions (MCRH) a natural relaxation of collision resistant ... more >>>
The celebrated IP=PSPACE Theorem [LFKN92,Shamir92] allows an all-powerful but untrusted prover to convince a polynomial-time verifier of the validity of extremely complicated statements (as long as they can be evaluated using polynomial space). The interactive proof system designed for this purpose requires a polynomial number of communication rounds and an ... more >>>