Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Paper:

TR18-022 | 1st February 2018 20:03

Efficient Batch Verification for UP

RSS-Feed




TR18-022
Authors: Omer Reingold, Guy Rothblum, Ron Rothblum
Publication: 1st February 2018 20:14
Downloads: 2660
Keywords: 


Abstract:

Consider a setting in which a prover wants to convince a verifier of the correctness of k NP statements. For example, the prover wants to convince the verifier that k given integers N_1,...,N_k are all RSA moduli (i.e., products of equal length primes). Clearly this problem can be solved by simply having the prover send the k NP witnesses, but this involves a lot of communication. Can interaction help? In particular, is it possible to construct interactive proofs for this task whose communication grows sub-linearly with k?

Our main result is such an interactive proof for verifying the correctness of any k UP statements (i.e., NP statements that have a unique witness). The proof-system uses only a constant number of rounds and the communication complexity is $k^\delta \cdot poly( m )$, where $\delta>0$ is an arbitrarily small constant, $m$ is the length of a single witness, and the $poly$ term refers to a fixed polynomial that only depends on the language and not on $\delta$. The (honest) prover strategy can be implemented in polynomial-time given access to the k (unique) witnesses.

Our proof leverages ``interactive witness verification'' (IWV), a new type of proof-system that may be of independent interest. An IWV is a proof-system in which the verifier needs to verify the correctness of an NP statement using: (i) a sublinear number of queries to an alleged NP witness, and (ii) a short interaction with a powerful but untrusted prover. In contrast to the setting of PCPs and Interactive PCPs, here the verifier only has access to the raw NP witness, rather than some encoding thereof.



ISSN 1433-8092 | Imprint