We show that the shortest vector problem in lattices
with L_2 norm is NP-hard for randomized reductions. Moreover we
also show that there is a positive absolute constant c, so that to
find a vector which is longer than the shortest non-zero vector by no
more than a factor of 1+2^{-n^c} (with respect to the L_{2} norm) is
also NP-hard for randomized reductions. The corresponding decision
problem is NP-complete for randomized reductions.
Revision of: TR97-047
We show that the shortest vector problem in lattices
with L_2 norm is NP-hard for randomized reductions. Moreover we
also show that there is a positive absolute constant c, so that to
find a vector which is longer than the shortest non-zero vector by no
more than a factor of 1+2^{-n^c} (with respect to the L_{2} norm) is
also NP-hard for randomized reductions. The corresponding decision
problem is NP-complete for randomized reductions.