Stasys Jukna

In a semantic resolution proof we operate with clauses only

but allow {\em arbitrary} rules of inference:

C_1 C_2 ... C_m

__________________

C

Consistency is the only requirement. We prove a very simple

exponential lower bound for the size ...
more >>>

Albert Atserias, Maria Luisa Bonet

Having good algorithms to verify tautologies as efficiently as possible

is of prime interest in different fields of computer science.

In this paper we present an algorithm for finding Resolution refutations

based on finding tree-like Res(k) refutations. The algorithm is based on

the one of Beame and Pitassi \cite{BP96} ...
more >>>

Josh Buresh-Oppenheim, Paul Beame, Ran Raz, Ashish Sabharwal

We prove a quasi-polynomial lower bound on the size of bounded-depth

Frege proofs of the pigeonhole principle $PHP^{m}_n$ where

$m= (1+1/{\polylog n})n$.

This lower bound qualitatively matches the known quasi-polynomial-size

bounded-depth Frege proofs for these principles.

Our technique, which uses a switching lemma argument like other lower bounds

for ...
more >>>

Dmitry Sokolov

One of the major open problems in proof complexity is to prove lower bounds on $AC_0[p]$-Frege proof

systems. As a step toward this goal Impagliazzo, Mouli and Pitassi in a recent paper suggested to prove

lower bounds on the size for Polynomial Calculus over the $\{\pm 1\}$ basis. In this ...
more >>>

Ilario Bonacina, Maria Luisa Bonet

The propositional proof system Sherali-Adams (SA) has polynomial-size proofs of the pigeonhole principle (PHP). Similarly, the Nullstellensatz (NS) proof system has polynomial size proofs of the bijective (i.e. both functional and onto) pigeonhole principle (ofPHP). We characterize the strength of these algebraic proof systems in terms of Boolean proof systems ... more >>>

Johan Håstad

We study Frege proofs for the one-to-one graph Pigeon Hole Principle

defined on the $n\times n$ grid where $n$ is odd.

We are interested in the case where each formula

in the proof is a depth $d$ formula in the basis given by

$\land$, $\lor$, and $\neg$. We prove that ...
more >>>

Noah Fleming, Stefan Grosser, Toniann Pitassi, Robert Robere

The complexity class PPP contains all total search problems many-one reducible to the PIGEON problem, where we are given a succinct encoding of a function mapping n+1 pigeons to n holes, and must output two pigeons that collide in a hole. PPP is one of the “original five” syntactically-defined subclasses ... more >>>

Siddhartha Jain, Jiawei Li, Robert Robere, Zhiyang Xun

The generalized pigeonhole principle says that if tN + 1 pigeons are put into N holes then there must be a hole containing at least t + 1 pigeons. Let t-PPP denote the class of all total NP-search problems reducible to finding such a t-collision of pigeons. We introduce a ... more >>>

Ilario Bonacina, Maria Luisa Bonet, Sam Buss, Massimo Lauria

The concept of redundancy in SAT lead to more expressive and powerful proof search techniques, e.g. able to express various inprocessing techniques, and to interesting hierarchies of proof systems [Heule et.al’20, Buss-Thapen’19].

We propose a general way to integrate redundancy rules in MaxSAT, that is we define MaxSAT variants of ...
more >>>

Takashi Ishizuka

One of the most famous TFNP subclasses is PPP, which is the set of all search problems whose totality is guaranteed by the pigeonhole principle. The author's recent preprint [ECCC TR24-002 2024] has introduced a TFNP problem related to the pigeonhole principle over a quotient set, called Quotient Pigeon, and ... more >>>