Toniann Pitassi, Robert Robere

For a universal constant $\alpha > 0$, we prove size lower bounds of $2^{\alpha N}$ for computing an explicit monotone function in NP in the following models of computation: monotone formulas, monotone switching networks, monotone span programs, and monotone comparator circuits, where $N$ is the number of variables of the ... more >>>

Dmitry Sokolov

In 1990 Karchmer and Widgerson considered the following communication problem $Bit$: Alice and Bob know a function $f: \{0, 1\}^n \to \{0, 1\}$, Alice receives a point $x \in f^{-1}(1)$, Bob receives $y \in f^{-1}(0)$, and their goal is to find a position $i$ such that $x_i \neq y_i$. Karchmer ... more >>>

Toniann Pitassi, Robert Robere

We characterize the size of monotone span programs computing certain "structured" boolean functions by the Nullstellensatz degree of a related unsatisfiable Boolean formula.

This yields the first exponential lower bounds for monotone span programs over arbitrary fields, the first exponential separations between monotone span programs over fields of different ... more >>>

Susanna de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere

One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., $\mathbf{P}\not\subseteq\mathbf{NC}^1$). Karchmer, Raz, and Wigderson (Computational Complexity 5(3/4), 1995) suggested to approach this problem by proving that depth complexity behaves “as expected” with respect to the composition of functions $f ... more >>>