In a sampling problem, we are given an input $x\in\left\{0,1\right\} ^{n}$, and asked to sample approximately from a probability
distribution $D_{x}$ over poly(n)-bit strings. In a search problem, we are given an input
$x\in\left\{ 0,1\right\} ^{n}$, and asked to find a member of a nonempty set
$A_{x}$ with high probability. ...
more >>>
The thesis summarizes known results in the field of NP search problems. We discuss the complexity of integer factoring in detail, and we propose new results which place the problem in known classes and aim to separate it from PLS in some sense. Furthermore, we define several new search problems.
more >>>We study the possibilities and limitations
of pseudodeterministic algorithms,
a notion put forward by Gat and Goldwasser (2011).
These are probabilistic algorithms that solve search problems
such that on each input, with high probability, they output
the same solution, which may be thought of as a canonical solution.
We consider ...
more >>>
Ramsey theory assures us that in any graph there is a clique or independent set of a certain size, roughly logarithmic in the graph size. But how difficult is it to find the clique or independent set? If the graph is given explicitly, then it is possible to do so ... more >>>
In this work, dedicated to Shafi Goldwasser, we consider a relaxation of the notion of pseudodeterministic algorithms, which was put forward by Gat and Goldwasser ({\em ECCC}, TR11--136, 2011).
Pseudodeterministic algorithms are randomized algorithms that solve search problems by almost always providing the same canonical solution (per each input). ... more >>>
We relate various complexity measures like sensitivity, block sensitivity, certificate complexity for multi-output functions to the query complexities of such functions. Using these relations, we improve upon the known relationship between pseudo-deterministic query complexity and deterministic query complexity for total search problems: We show that pseudo-deterministic query complexity is at ... more >>>
The complexity class PPP contains all total search problems many-one reducible to the PIGEON problem, where we are given a succinct encoding of a function mapping n+1 pigeons to n holes, and must output two pigeons that collide in a hole. PPP is one of the “original five” syntactically-defined subclasses ... more >>>
The generalized pigeonhole principle says that if tN + 1 pigeons are put into N holes then there must be a hole containing at least t + 1 pigeons. Let t-PPP denote the class of all total NP-search problems reducible to finding such a t-collision of pigeons. We introduce a ... more >>>
We propose a new definition of the class of search problems that correspond to BPP.
Specifically, a problem in this class is specified by a polynomial-time approximable function $q:\{0,1\}^*\times\{0,1\}^*\to[0,1]$ that associates, with each possible solution $y$ to an instance $x$, a quality $q(x,y)$.
Intuitively, quality 1 corresponds to perfectly ...
more >>>