Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR24-100 | 21st May 2024
Changrui Mu, Prashant Nalini Vasudevan

Instance-Hiding Interactive Proofs

In an Instance-Hiding Interactive Proof (IHIP) [Beaver et al. CRYPTO 90], an efficient verifier with a _private_ input x interacts with an unbounded prover to determine whether x is contained in a language L. In addition to completeness and soundness, the instance-hiding property requires that the prover should not learn ... more >>>


TR24-099 | 5th June 2024
Pavel Hrubes

A subquadratic upper bound on Hurwitz's problem and related non-commutative polynomials

For every $n$, we construct a sum-of-squares identity
$ (\sum_{i=1}^n x_i^2) (\sum_{j=1}^n y_j^2)= \sum_{k=1}^s f_k^2$,
where $f_k$ are bilinear forms with complex coefficients and $s= O(n^{1.62})$. Previously, such a construction was known with $s=O(n^2/\log n)$.
The same bound holds over any field of positive characteristic.

As an application to ... more >>>


TR24-098 | 26th May 2024
Noga Amit, Orr Paradise, Guy Rothblum, shafi goldwasser

Models That Prove Their Own Correctness

Revisions: 2

How can we trust the correctness of a learned model on a particular input of interest? Model accuracy is typically measured $on\ average$ over a distribution of inputs, giving no guarantee for any fixed input. This paper proposes a theoretically-founded solution to this problem: to train $Self$-$Proving\ models$ that prove ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint