This paper studies the \emph{refuter} problems, a family of decision-tree $\mathrm{TFNP}$ problems capturing the metamathematical difficulty of proving proof complexity lower bounds. Suppose $\varphi$ is a hard tautology that does not admit any length-$s$ proof in some proof system $P$. In the corresponding refuter problem, we are given (query ... more >>>
We prove that for every odd $q\geq 3$, any $q$-query binary, possibly non-linear locally decodable code ($q$-LDC) $E:\{\pm 1\}^k \rightarrow \{\pm 1\}^n$ must satisfy $k \leq \tilde{O}(n^{1-2/q})$. For even $q$, this bound was established in a sequence of works (Katz and Trevisan (2000), Goldreich, Karloff, Schulman, and Trevisan (2002), and ... more >>>
The study of space-bounded computation has drawn extensively from ideas and results in the field of communication complexity. Catalytic Computation (Buhrman, Cleve, Koucký, Loff and Speelman, STOC 2013) studies the power of bounded space augmented with a pre-filled hard drive that can be used non-destructively during the computation. Presently, many ... more >>>