Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



TR01-025 | 28th March 2001 00:00

Approximating Minimum Unsatisfiability of Linear Equations



We consider the following optimization problem:
given a system of m linear equations in n variables over a certain field,
a feasible solution is any assignment of values to the variables, and the
minimized objective function is the number of equations that are not
satisfied. For the case of the finite field GF[2], this problem is also
known as the Nearest Codeword problem. In this note we show that for any
constant c there exists a randomized polynomial time algorithm that
approximates the above problem, called the Minimum Unsatisfiability of
Linear Equations (MIN-UNSATISFY for short), with n/(c log n) approximation
ratio. Our results hold for any field in which systems of linear equations
can be solved in polynomial time.

ISSN 1433-8092 | Imprint