Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



TR07-078 | 11th August 2007 00:00

Resolution over Linear Equations and Multilinear Proofs



We develop and study the complexity of propositional proof systems of varying strength extending resolution by allowing it to operate with disjunctions of linear equations instead of clauses. We demonstrate polynomial-size refutations for hard tautologies like the pigeonhole principle, Tseitin graph tautologies and the clique-coloring tautologies in these proof systems. Using the (monotone) interpolation by a communication game technique we establish an exponential-size lower bound on refutations in a certain, considerably strong, fragment of resolution over linear equations, as well as a general polynomial upper bound on (non-monotone) interpolants in this fragment.
We then apply these results to extend and improve previous results on
multilinear proofs (over fields of characteristic 0), as studied in
[RazTzameret06]. Specifically, we show the following:

1. Proofs operating with depth-3 multilinear formulas polynomially simulate a certain, considerably strong, fragment of resolution over linear equations.

2. Proofs operating with depth-3 multilinear formulas admit polynomial-size refutations of the pigeonhole principle and Tseitin graph tautologies. The former improve over a previous result that established small multilinear proofs only for the \emph{functional} pigeonhole principle. The latter are different than previous proofs, and apply to multilinear proofs of Tseitin mod p graph tautologies over any field of characteristic 0.

We conclude by connecting resolution over linear equations with extensions of the cutting planes proof system.

ISSN 1433-8092 | Imprint