Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Paper:

TR11-134 | 9th October 2011 11:24

Separating multilinear branching programs and formulas

RSS-Feed




TR11-134
Authors: Zeev Dvir, Guillaume Malod, Sylvain Perifel, Amir Yehudayoff
Publication: 9th October 2011 15:22
Downloads: 1379
Keywords: 


Abstract:

This work deals with the power of linear algebra in the context of multilinear computation. By linear algebra we mean algebraic branching programs (ABPs) which are known to be computationally equivalent to two basic tools in linear algebra: iterated matrix multiplication and the determinant. We compare the computational power of multilinear ABPs to that of multilinear arithmetic formulas, and prove a tight super-polynomial separation between the two models. Specifically, we describe an explicit $n$-variate polynomial $F$ that is computed by a linear-size multilinear ABP but every multilinear formula computing $F$ must be of size $n^{\Omega(\log n)}$.



ISSN 1433-8092 | Imprint