Revision #2 Authors: Zeev Dvir, Rafael Mendes de Oliveira, Amir Shpilka

Accepted on: 19th February 2014 06:05

Downloads: 485

Keywords:

Two polynomials $f, g \in F[x_1, \ldots, x_n]$ are called shift-equivalent if there exists a vector $(a_1, \ldots, a_n) \in {F}^n$ such that the polynomial identity $f(x_1+a_1, \ldots, x_n+a_n) \equiv g(x_1,\ldots,x_n)$ holds. Our main result is a new randomized algorithm that tests whether two given polynomials are shift equivalent. Our algorithm runs in time polynomial in the circuit size of the polynomials, to which it is given black box access. This complements a previous work of Grigoriev (Theoretical Computer Science, 1997) who gave a deterministic algorithm running in time $n^{O(d)}$ for degree $d$ polynomials.

Our algorithm uses randomness only to solve instances of the Polynomial Identity Testing (PIT) problem. Hence, if one could de-randomize PIT (a long-standing open problem in complexity) a de-randomization of our algorithm would follow. This establishes an equivalence between de-randomizing shift-equivalence testing and de-randomizing PIT (both in the black-box and the white-box setting). For certain restricted models, such as Read Once Branching Programs, we already obtain a deterministic algorithm using existing PIT results.

Added background material to related work, added acknowledgment

and added alternative approach in the appendix.

Revision #1 Authors: Zeev Dvir, Rafael Mendes de Oliveira, Amir Shpilka

Accepted on: 16th January 2014 17:42

Downloads: 394

Keywords:

Two polynomials $f, g \in F[x_1, \ldots, x_n]$ are called shift-equivalent if there exists a vector $(a_1, \ldots, a_n) \in {F}^n$ such that the polynomial identity $f(x_1+a_1, \ldots, x_n+a_n) \equiv g(x_1,\ldots,x_n)$ holds. Our main result is a new randomized algorithm that tests whether two given polynomials are shift equivalent. Our algorithm runs in time polynomial in the circuit size of the polynomials, to which it is given black box access. This complements a previous work of Grigoriev (Theoretical Computer Science, 1997) who gave a deterministic algorithm running in time $n^{O(d)}$ for degree $d$ polynomials.

Our algorithm uses randomness only to solve instances of the Polynomial Identity Testing (PIT) problem. Hence, if one could de-randomize PIT (a long-standing open problem in complexity) a de-randomization of our algorithm would follow. This establishes an equivalence between de-randomizing shift-equivalence testing and de-randomizing PIT (both in the black-box and the white-box setting). For certain restricted models, such as Read Once Branching Programs, we already obtain a deterministic algorithm using existing PIT results.

Fixed a typo

TR14-003 Authors: Zeev Dvir, Rafael Mendes de Oliveira, Amir Shpilka

Publication: 10th January 2014 09:00

Downloads: 1092

Keywords:

Two polynomials $f, g \in F[x_1, \ldots, x_n]$ are called shift-equivalent if there exists a vector $(a_1, \ldots, a_n) \in {F}^n$ such that the polynomial identity $f(x_1+a_1, \ldots, x_n+a_n) \equiv g(x_1,\ldots,x_n)$ holds. Our main result is a new randomized algorithm that tests whether two given polynomials are shift equivalent. Our algorithm runs in time polynomial in the circuit size of the polynomials, to which it is given black box access. This complements a previous work of Grigoriev (Theoretical Computer Science, 1997) who gave a deterministic algorithm running in time $n^{O(d)}$ for degree $d$ polynomials.

Our algorithm uses randomness only to solve instances of the Polynomial Identity Testing (PIT) problem. Hence, if one could de-randomize PIT (a long-standing open problem in complexity) a de-randomization of our algorithm would follow. This establishes an equivalence between de-randomizing shift-equivalence testing and de-randomizing PIT (both in the black-box and the white-box setting). For certain restricted models, such as Read Once Branching Programs, we already obtain a deterministic algorithm using existing PIT results.

On Page 3, it should be "see Theorem 4.1 of [SY10] for a proof" instead of see "Theorem 4.3 of [SY10] for a proof".