Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #3 to TR15-020 | 5th June 2018 19:54

Explicit Strong LTCs with inverse poly-log rate and constant soundness

RSS-Feed




Revision #3
Authors: Michael Viderman
Accepted on: 5th June 2018 19:54
Downloads: 744
Keywords: 


Abstract:

An error-correcting code $C \subseteq \F^n$ is called $(q,\epsilon)$-strong locally testable code (LTC) if there exists a tester that makes at most $q$ queries to the input word. This tester accepts all codewords with probability 1 and rejects all non-codewords $x\notin C$ with probability at least $\epsilon \cdot \delta(x,C)$, where $\delta(x,C)$ denotes the relative Hamming distance between the word $x$ and the code $C$. The parameter $q$ is called the query complexity and the parameter $\epsilon$ is called soundness.

Goldreich and Sudan (J.ACM 2006) asked about the existence of strong LTCs with constant query complexity, constant relative distance, constant soundness and inverse polylogarithmic rate. They also asked about the explicit constructions of these codes.

Strong LTCs with the required range of parameters were obtained recently in the works of Viderman (CCC 2013, FOCS 2013) based on the papers of Meir (SICOMP 2009) and Dinur (J.ACM 2007). However, the construction of these codes was \emph{probabilistic}.

In this work we show that codes presented in the works of Dinur (J.ACM 2007) and Ben-Sasson and Sudan (SICOMP 2005) provide the \emph{explicit} construction of strong LTCs with the above range of parameters. Previously, such codes were proven to be weak LTCs. Using the results of Viderman (CCC 2013, FOCS 2013) we prove that such codes are, in fact, strong LTCs.



Changes to previous version:

minor changes, some typos were fixed


Revision #2 to TR15-020 | 2nd April 2018 18:47

Explicit Strong LTCs with inverse poly-log rate and constant soundness





Revision #2
Authors: Michael Viderman
Accepted on: 2nd April 2018 18:47
Downloads: 614
Keywords: 


Abstract:

An error-correcting code $C \subseteq \F^n$ is called $(q,\epsilon)$-strong locally testable code (LTC) if there exists a tester that makes at most $q$ queries to the input word. This tester accepts all codewords with probability 1 and rejects all non-codewords $x\notin C$ with probability at least $\epsilon \cdot \delta(x,C)$, where $\delta(x,C)$ denotes the relative Hamming distance between the word $x$ and the code $C$. The parameter $q$ is called the query complexity and the parameter $\epsilon$ is called soundness.

Goldreich and Sudan (J.ACM 2006) asked about the existence of strong LTCs with constant query complexity, constant relative distance, constant soundness and inverse polylogarithmic rate. They also asked about the explicit constructions of these codes.

Strong LTCs with the required range of parameters were obtained recently in the works of Viderman (CCC 2013, FOCS 2013) based on the papers of Meir (SICOMP 2009) and Dinur (J.ACM 2007). However, the construction of these codes was \emph{probabilistic}.

In this work we show that codes presented in the works of Dinur (J.ACM 2007) and Ben-Sasson and Sudan (SICOMP 2005) provide the \emph{explicit} construction of strong LTCs with the above range of parameters. Previously, such codes were proven to be weak LTCs. Using the results of Viderman (CCC 2013, FOCS 2013) we prove that such codes are, in fact, strong LTCs.



Changes to previous version:

multiple fixes


Revision #1 to TR15-020 | 13th April 2017 00:22

Explicit Strong LTCs with inverse poly-log rate and constant soundness





Revision #1
Authors: Michael Viderman
Accepted on: 13th April 2017 00:22
Downloads: 783
Keywords: 


Abstract:

An error-correcting code $C \subseteq \F^n$ is called $(q,\epsilon)$-strong locally testable code (LTC) if there exists a tester that makes at most $q$ queries to the input word. This tester accepts all codewords with probability 1 and rejects all non-codewords $x\notin C$ with probability at least $\epsilon \cdot \delta(x,C)$, where $\delta(x,C)$ denotes the relative Hamming distance between the word $x$ and the code $C$. The parameter $q$ is called the query complexity and the parameter $\epsilon$ is called soundness.

Goldreich and Sudan (J.ACM 2006) asked about the existence of strong LTCs with constant query complexity, constant relative distance, constant soundness and inverse polylogarithmic rate. They also asked about the explicit constructions of these codes.

Strong LTCs with the required range of parameters were obtained recently in the works of Viderman (CCC 2013, FOCS 2013) based on the papers of Meir (SICOMP 2009) and Dinur (J.ACM 2007). However, the construction of these codes was \emph{probabilistic}.

In this work we show that codes presented in the works of Dinur (J.ACM 2007) and Ben-Sasson and Sudan (SICOMP 2005) provide the \emph{explicit} construction of strong LTCs with the above range of parameters. Previously, such codes were proven to be weak LTCs. Using the results of Viderman (CCC 2013, FOCS 2013) we prove that such codes are, in fact, strong LTCs.


Paper:

TR15-020 | 31st January 2015 18:11

Explicit Strong LTCs with inverse poly-log rate and constant soundness





TR15-020
Authors: Michael Viderman
Publication: 4th February 2015 20:36
Downloads: 1672
Keywords: 


Abstract:

An error-correcting code $C \subseteq \F^n$ is called $(q,\epsilon)$-strong locally testable code (LTC) if there exists a tester that makes at most $q$ queries to the input word. This tester accepts all codewords with probability 1 and rejects all non-codewords $x\notin C$ with probability at least $\epsilon \cdot \delta(x,C)$, where $\delta(x,C)$ denotes the relative Hamming distance between the word $x$ and the code $C$. The parameter $q$ is called the query complexity and the parameter $\epsilon$ is called soundness.

Goldreich and Sudan (J.ACM 2006) asked about the existence of strong LTCs with constant query complexity, constant relative distance, constant soundness and inverse polylogarithmic rate. They also asked about the explicit constructions of these codes.

Strong LTCs with the required range of parameters were obtained recently in the works of Viderman (CCC 2013, FOCS 2013) based on the papers of Meir (SICOMP 2009) and Dinur (J.ACM 2007). However, the construction of these codes was \emph{probabilistic}.

In this work we show that codes presented in the works of Dinur (J.ACM 2007) and Ben-Sasson and Sudan (SICOMP 2005) provide the \emph{explicit} construction of strong LTCs with the above range of parameters. Previously, such codes were proven to be weak LTCs. Using the results of Viderman (CCC 2013, FOCS 2013) we prove that such codes are, in fact, strong LTCs.



ISSN 1433-8092 | Imprint